Spaces:
Sleeping
Sleeping
File size: 7,306 Bytes
99a05f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import torch
import os
import glob
import argparse
import numpy as np
import cv2
import PIL.Image as pil_img
from loguru import logger
import shutil
import trimesh
import pyrender
from models.deco import DECO
from common import constants
os.environ['PYOPENGL_PLATFORM'] = 'egl'
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
def initiate_model(args):
deco_model = DECO('hrnet', True, device)
logger.info(f'Loading weights from {args.model_path}')
checkpoint = torch.load(args.model_path)
deco_model.load_state_dict(checkpoint['deco'], strict=True)
deco_model.eval()
return deco_model
def render_image(scene, img_res, img=None, viewer=False):
'''
Render the given pyrender scene and return the image. Can also overlay the mesh on an image.
'''
if viewer:
pyrender.Viewer(scene, use_raymond_lighting=True)
return 0
else:
r = pyrender.OffscreenRenderer(viewport_width=img_res,
viewport_height=img_res,
point_size=1.0)
color, _ = r.render(scene, flags=pyrender.RenderFlags.RGBA)
color = color.astype(np.float32) / 255.0
if img is not None:
valid_mask = (color[:, :, -1] > 0)[:, :, np.newaxis]
input_img = img.detach().cpu().numpy()
output_img = (color[:, :, :-1] * valid_mask +
(1 - valid_mask) * input_img)
else:
output_img = color
return output_img
def create_scene(mesh, img, focal_length=500, camera_center=250, img_res=500):
# Setup the scene
scene = pyrender.Scene(bg_color=[1.0, 1.0, 1.0, 1.0],
ambient_light=(0.3, 0.3, 0.3))
# add mesh for camera
camera_pose = np.eye(4)
camera_rotation = np.eye(3, 3)
camera_translation = np.array([0., 0, 2.5])
camera_pose[:3, :3] = camera_rotation
camera_pose[:3, 3] = camera_rotation @ camera_translation
pyrencamera = pyrender.camera.IntrinsicsCamera(
fx=focal_length, fy=focal_length,
cx=camera_center, cy=camera_center)
scene.add(pyrencamera, pose=camera_pose)
# create and add light
light = pyrender.PointLight(color=[1.0, 1.0, 1.0], intensity=1)
light_pose = np.eye(4)
for lp in [[1, 1, 1], [-1, 1, 1], [1, -1, 1], [-1, -1, 1]]:
light_pose[:3, 3] = mesh.vertices.mean(0) + np.array(lp)
# out_mesh.vertices.mean(0) + np.array(lp)
scene.add(light, pose=light_pose)
# add body mesh
material = pyrender.MetallicRoughnessMaterial(
metallicFactor=0.0,
alphaMode='OPAQUE',
baseColorFactor=(1.0, 1.0, 0.9, 1.0))
mesh_images = []
# resize input image to fit the mesh image height
img_height = img_res
img_width = int(img_height * img.shape[1] / img.shape[0])
img = cv2.resize(img, (img_width, img_height))
mesh_images.append(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
for sideview_angle in [0, 90, 180, 270]:
out_mesh = mesh.copy()
rot = trimesh.transformations.rotation_matrix(
np.radians(sideview_angle), [0, 1, 0])
out_mesh.apply_transform(rot)
out_mesh = pyrender.Mesh.from_trimesh(
out_mesh,
material=material)
mesh_pose = np.eye(4)
scene.add(out_mesh, pose=mesh_pose, name='mesh')
output_img = render_image(scene, img_res)
output_img = pil_img.fromarray((output_img * 255).astype(np.uint8))
output_img = np.asarray(output_img)[:, :, :3]
mesh_images.append(output_img)
# delete the previous mesh
prev_mesh = scene.get_nodes(name='mesh').pop()
scene.remove_node(prev_mesh)
# show upside down view
for topview_angle in [90, 270]:
out_mesh = mesh.copy()
rot = trimesh.transformations.rotation_matrix(
np.radians(topview_angle), [1, 0, 0])
out_mesh.apply_transform(rot)
out_mesh = pyrender.Mesh.from_trimesh(
out_mesh,
material=material)
mesh_pose = np.eye(4)
scene.add(out_mesh, pose=mesh_pose, name='mesh')
output_img = render_image(scene, img_res)
output_img = pil_img.fromarray((output_img * 255).astype(np.uint8))
output_img = np.asarray(output_img)[:, :, :3]
mesh_images.append(output_img)
# delete the previous mesh
prev_mesh = scene.get_nodes(name='mesh').pop()
scene.remove_node(prev_mesh)
# stack images
IMG = np.hstack(mesh_images)
IMG = pil_img.fromarray(IMG)
IMG.thumbnail((3000, 3000))
return IMG
def main(args):
if os.path.isdir(args.img_src):
images = glob.iglob(args.img_src + '/*', recursive=True)
else:
images = [args.img_src]
deco_model = initiate_model(args)
smpl_path = os.path.join(constants.SMPL_MODEL_DIR, 'smpl_neutral_tpose.ply')
for img_name in images:
img = cv2.imread(img_name)
img = cv2.resize(img, (256, 256), cv2.INTER_CUBIC)
img = img.transpose(2,0,1)/255.0
img = img[np.newaxis,:,:,:]
img = torch.tensor(img, dtype = torch.float32).to(device)
cont, _, _ = deco_model(img)
cont = cont.detach().cpu().numpy().squeeze()
cont_smpl = []
for indx, i in enumerate(cont):
if i >= 0.5:
cont_smpl.append(indx)
img = img.detach().cpu().numpy()
img = np.transpose(img[0], (1, 2, 0))
img = img * 255
img = img.astype(np.uint8)
contact_smpl = np.zeros((1, 1, 6890))
contact_smpl[0][0][cont_smpl] = 1
body_model_smpl = trimesh.load(smpl_path, process=False)
for vert in range(body_model_smpl.visual.vertex_colors.shape[0]):
body_model_smpl.visual.vertex_colors[vert] = args.mesh_colour
body_model_smpl.visual.vertex_colors[cont_smpl] = args.annot_colour
rend = create_scene(body_model_smpl, img)
os.makedirs(os.path.join(args.out_dir, 'Renders'), exist_ok=True)
rend.save(os.path.join(args.out_dir, 'Renders', os.path.basename(img_name).split('.')[0] + '.png'))
out_dir = os.path.join(args.out_dir, 'Preds', os.path.basename(img_name).split('.')[0])
os.makedirs(out_dir, exist_ok=True)
logger.info(f'Saving mesh to {out_dir}')
shutil.copyfile(img_name, os.path.join(out_dir, os.path.basename(img_name)))
body_model_smpl.export(os.path.join(out_dir, 'pred.obj'))
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--img_src', help='Source of image(s). Can be file or directory', default='./demo_out', type=str)
parser.add_argument('--out_dir', help='Where to store images', default='./demo_out', type=str)
parser.add_argument('--model_path', help='Path to best model weights', default='./checkpoints/Release_Checkpoint/deco_best.pth', type=str)
parser.add_argument('--mesh_colour', help='Colour of the mesh', nargs='+', type=int, default=[130, 130, 130, 255])
parser.add_argument('--annot_colour', help='Colour of the mesh', nargs='+', type=int, default=[0, 255, 0, 255])
args = parser.parse_args()
main(args)
|