File size: 9,670 Bytes
99a05f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# python scripts/datascripts/get_part_seg_mask.py --data_npz data/rich_val_smplx_small.npz --model_type 'smplx'


import os
import sys
sys.path.append('/is/cluster/work/achatterjee/dca_contact')
import cv2
import argparse
import numpy as np
import torch
from common import constants
from models.smpl import SMPL
from smplx import SMPLX
from utils.mesh_utils import save_results_mesh
import trimesh
from tqdm import tqdm
from utils.image_utils import get_body_part_texture, generate_part_labels
from utils.diff_renderer import Pytorch3D

class PART_LABELER:
    def __init__(self, body_params, img_w, img_h, model_type, debug=False):
        """
        Get part segmentation masks for images

        Args:
            body_params: SMPL parameters
            img_w: image width
            img_h: image height
            model_type: 'smpl' or 'smplx'
        """
        self.device = torch.device('cuda:{}'.format(args.gpu)) if torch.cuda.is_available() else torch.device('cpu')

        self.model_type = model_type

        # Setup the SMPL model
        if self.model_type == 'smpl':
            self.body_model = SMPL(constants.SMPL_MODEL_DIR).to(self.device)
        if self.model_type == 'smplx':
            self.body_model = SMPLX(constants.SMPL_MODEL_DIR,
                                    num_betas=10,
                                    use_pca=False).to(self.device)

        self.body_part_vertex_colors, self.body_part_texture = get_body_part_texture(self.body_model.faces,
                                                                                     model_type=self.model_type,
                                                                                     non_parametric=False)
        # bins are discrete part labels, add eps to avoid quantization error
        eps = 1e-2
        # self.part_label_bins = (torch.arange(int(constants.N_PARTS)) / float(constants.N_PARTS)) + eps
        self.part_label_bins = torch.linspace(0, constants.N_PARTS-1, constants.N_PARTS) + eps

        ## Run SMPL forward
        self.body_params = body_params

        self.smpl_verts, self.smpl_joints = self.get_posed_mesh(debug)

        # Assumbe same focal lenght for all frames in a seq
        focal_length = self.body_params['cam_k'][0, 0, 0]
        # focal_length = focal_length[0]
        # Setup Pyrender renderer
        # self.renderer = Renderer(focal_length=focal_length, img_w=img_w, img_h=img_h,
        #                          faces=self.smpl_model.faces,
        #                          same_mesh_color=False)

        # Setup Pytorch3D Renderer
        focal_length = torch.FloatTensor([focal_length])
        smpl_faces = torch.from_numpy(self.body_model.faces.astype(np.int32)).to(self.device)
        self.renderer = Pytorch3D(img_h=img_h,
                                  img_w=img_w,
                                  focal_length=focal_length,
                                  smpl_faces=smpl_faces,
                                  texture_mode='partseg',
                                  vertex_colors=self.body_part_vertex_colors,
                                  face_textures=self.body_part_texture,
                                  model_type=self.model_type)

    def get_posed_mesh(self, debug=False):
        betas = torch.from_numpy(self.body_params['shape']).float().to(self.device)
        pose = torch.from_numpy(self.body_params['pose']).float().to(self.device)
        transl = torch.from_numpy(self.body_params['transl']).float().to(self.device)

        # extra smplx params
        extra_args = {'jaw_pose': torch.zeros((betas.shape[0], 3)).float().to(self.device),
                        'leye_pose': torch.zeros((betas.shape[0], 3)).float().to(self.device),
                        'reye_pose': torch.zeros((betas.shape[0], 3)).float().to(self.device),
                        'expression': torch.zeros((betas.shape[0], 10)).float().to(self.device),
                        'left_hand_pose': torch.zeros((betas.shape[0], 45)).float().to(self.device),
                        'right_hand_pose': torch.zeros((betas.shape[0], 45)).float().to(self.device)}

        smpl_output = self.body_model(betas=betas,
                                      body_pose=pose[:, 3:],
                                      global_orient=pose[:, :3],
                                      pose2rot=True,
                                      transl=transl,
                                      **extra_args)
        smpl_verts = smpl_output.vertices.detach().cpu().numpy()
        smpl_joints = smpl_output.joints.detach().cpu().numpy()

        if debug:
            for mesh_i in range(smpl_verts.shape[0]):
                out_dir = 'temp_meshes'
                os.makedirs(out_dir, exist_ok=True)
                out_file = os.path.join(out_dir, f'temp_mesh_{mesh_i:04d}.obj')
                save_results_mesh(smpl_verts[mesh_i], self.body_model.faces, out_file)
        return smpl_verts, smpl_joints

    def bucketize_part_image(self, color_rgb, mask):
        # make single channel
        body_parts = color_rgb.clone()
        body_parts *= 255.  # multiply it with 255 to make labels distant
        body_parts = body_parts.max(-1)[0]  # reduce to single channel
        body_parts = torch.bucketize(body_parts, self.part_label_bins, right=True)  # np.digitize(body_parts, bins, right=True)
        # add 1 to make background label 0
        body_parts = body_parts.long() + 1
        body_parts = body_parts * mask.detach()
        return body_parts.long()

    def create_part_masks(self, body_parts):
        # extract every pixel as a separate mask
        part_masks = []
        for part_id in range(1, constants.N_PARTS+1): # first one is for background
            part_mask = (body_parts == part_id)
            part_masks.append(part_mask)
        return part_masks

    def render_part_mask_p3d(self, img_paths, out_dir):
        with torch.no_grad():
            # os.makedirs(out_dir, exist_ok=True)
            for index, img_path in tqdm(enumerate(img_paths), dynamic_ncols=True):
                # Load the image
                if not os.path.exists(img_path):
                    if 'train' in img_path:
                        split = 'train'
                    elif 'val' in img_path:
                        split = 'val'
                    else:
                        split = 'test'        
                    new_img_name = img_path[img_path.index(split)+4:].replace('/', '_')
                    new_path = os.path.join('/is/cluster/work/achatterjee/rich/images', split, new_img_name.replace('jpeg', 'bmp'))
                    if not os.path.exists(new_path):
                        new_path = new_path.replace('bmp', 'png')
                    img_path = new_path    
                if os.path.exists(out_dir[index]):
                    continue 
                # img_bgr = cv2.imread(img_path)
                chosen_vert_arr = torch.FloatTensor(self.smpl_verts[[index]]).to(self.device)
                front_view = self.renderer(chosen_vert_arr)
                front_view_rgb = front_view[0, :3, :, :].permute(1,2,0).detach().cpu()
                front_view_mask = front_view[0, 3, :, :].detach().cpu()
                # front_view_depth = front_view[0, 4, :, :].detach().cpu()

                body_parts = self.bucketize_part_image(front_view_rgb, front_view_mask)
                body_parts = body_parts.numpy()
                front_view_rgb = front_view_rgb.numpy()

                # body_part_masks = self.create_part_masks(body_parts)
                # display part masks
                # for part_id, part_mask in enumerate(body_part_masks):
                #     part_mask = part_mask * 255
                #     part_dir = os.path.join(out_dir, f'frame_{index:04d}_parts')
                #     os.makedirs(part_dir, exist_ok=True)
                #     out_file = os.path.join(part_dir, f'part_{part_id:02d}_{index:04d}.png')
                #     cv2.imwrite(out_file, part_mask)

                # out_file = os.path.join(out_dir, f'front_view_{index:04d}.png')
                # cv2.imwrite(out_file, front_view_rgb[: ,:, [2, 1, 0]]*255)
                # print(f'wrote front view to {out_file}')
                body_parts = cv2.merge((body_parts, body_parts, body_parts))
                # out_file = os.path.join(out_dir, f'body_parts_{index:04d}.png')
                out_file = out_dir[index]
                cv2.imwrite(out_file, body_parts)
                # print(f'wrote body part masks to {out_file}')


def main(args):
    out_dir = args.out_dir
    data_md = np.load(args.data_npz)

    # get all the jpg files in the folder
    img_paths = data_md['imgname']
    seg_paths = data_md['part_seg']
    print(f'found {len(img_paths)} images')
    # load first image
    img = cv2.imread(img_paths[0])
    img_h, img_w, _ = img.shape

    labeler = PART_LABELER(body_params=data_md, img_w=img_w, img_h=img_h,
                           model_type=args.model_type, debug=args.debug)
    labeler.render_part_mask_p3d(img_paths=img_paths, out_dir=seg_paths)

if __name__=='__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--out_dir', type=str, default='./temp_part_masks/', help='image folder')
    parser.add_argument('--data_npz', type=str, default='.', help='folder with smpl/smpl-x npz')
    parser.add_argument('--model_type', type=str, default='smplx', choices=['smpl', 'smplx'], help='model type')
    parser.add_argument('--gpu', type=int, default=0, help='gpu id')
    parser.add_argument('--debug', action='store_true', help='debug mode', default=False)
    args = parser.parse_args()

    main(args)