File size: 8,617 Bytes
99a05f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# python test_chore_phosa.py --dataset_root /is/cluster/fast/achatterjee/CHORE_DECO/phosa_test --npz_file /is/cluster/fast/achatterjee/Datasets/hot_phosa/hot_phosa_test.npz --json_file /ps/scratch/ps_shared/stripathi/deco/4agniv/hot_phosa_split/imgnames_per_object_dict.json --th 0.05

import numpy as np
import pandas as pd
import torch
import os
import os.path as osp
import json
import trimesh
import argparse
import collections
from tqdm import tqdm

DIST_MATRIX = np.load('/is/cluster/fast/achatterjee/dca_contact/data/smpl/smpl_neutral_geodesic_dist.npy')

def precision_recall_f1score(gt, pred):
    """
    Compute precision, recall, and f1
    """
    precision = np.zeros(gt.shape[0])
    recall = np.zeros(gt.shape[0])
    f1 = np.zeros(gt.shape[0])
    
    for b in range(gt.shape[0]):
        tp_num = gt[b, pred[b, :] >= 0.5].sum()
        precision_denominator = (pred[b, :] >= 0.5).sum()
        recall_denominator = (gt[b, :]).sum()

        precision_ = tp_num / precision_denominator
        recall_ = tp_num / recall_denominator
        if precision_denominator == 0: # if no pred
            precision_ = 1.
            recall_ = 0.
            f1_ = 0.
        elif recall_denominator == 0: # if no GT
            precision_ = 0.
            recall_ = 1.
            f1_ = 0.
        elif (precision_ + recall_) <= 1e-10:  # to avoid precision issues
            precision_= 0.
            recall_= 0.
            f1_ = 0.
        else:
            f1_ = 2 * precision_ * recall_ / (precision_ + recall_)

        precision[b] = precision_
        recall[b] = recall_
        f1[b] = f1_

    return precision, recall, f1

def det_error_metric(gt, pred):
    dist_matrix = torch.tensor(DIST_MATRIX)

    false_positive_dist = torch.zeros(gt.shape[0])
    false_negative_dist = torch.zeros(gt.shape[0])
    
    for b in range(gt.shape[0]):
        gt_columns = dist_matrix[:, gt[b, :]==1] if any(gt[b, :]==1) else dist_matrix
        error_matrix = gt_columns[pred[b, :] >= 0.5, :] if any(pred[b, :] >= 0.5) else gt_columns

        false_positive_dist_ = error_matrix.min(dim=1)[0].mean()
        false_negative_dist_ = error_matrix.min(dim=0)[0].mean()

        false_positive_dist[b] = false_positive_dist_
        false_negative_dist[b] = false_negative_dist_

    return false_positive_dist, false_negative_dist
    
def main(args):    
    with open(args.json_file, 'r') as fp:
        img_list_dict = json.load(fp)
    
    d = np.load(args.npz_file)
    img_count = 0
    
    tot_pre = 0
    tot_rec = 0
    tot_f1 = 0
    tot_fp_err = 0
    
    # for i, img in tqdm(enumerate(d['imgname']), dynamic_ncols=True):
    #     gt = d['contact_label'][i]
    #     gt = np.reshape(gt, (1, -1))
                
    #     imgname = osp.basename(img)
    #     for k, v in img_list_dict.items():
    #         if imgname in v: 
    #             object_class = k
    #             break
    #     # pred_path = osp.join(args.dataset_root, object_class, imgname, 'chore-test', f'k1.smpl_colored_{args.th}.ply')
    #     pred_path = osp.join(args.dataset_root, object_class, imgname, f'k1.smpl_colored_{args.th}.obj')
    #     if not osp.exists(pred_path):
    #         # print(pred_path)
    #         continue
    #     pred_mesh = trimesh.load(pred_path, process=False)
        
    #     pred = np.zeros((1, 6890))
    #     for i in range(pred_mesh.visual.vertex_colors.shape[0]):
    #         c = pred_mesh.visual.vertex_colors[i]
    #         if collections.Counter(c) == collections.Counter([255, 0, 0, 255]):
    #             pred[0, i] = 1
                
    #     pre, rec, f1 = precision_recall_f1score(gt, pred)
    #     fp_err, _ = det_error_metric(pred, gt)  
        
    #     tot_pre += pre.sum()
    #     tot_rec += rec.sum()
    #     tot_f1 += f1.sum()
    #     tot_fp_err += fp_err.numpy().sum()
        
    #     img_count += 1   
        
    # print(f'Dataset size: {img_count}')
    # print(f'Threshold: {args.th}\n')
    
    # print(f'Test Precision: {tot_pre/img_count}')  
    # print(f'Test Recall: {tot_rec/img_count}') 
    # print(f'Test F1 Score: {tot_f1/img_count}') 
    # print(f'Test FP Error: {tot_fp_err/img_count}')  

    # Part of code for checking a random image
    img_search = osp.join('/ps/project/datasets/HOT/Contact_Data/images/training', 'vcoco_000000542163.jpg')
    i = np.where(d['imgname'] == img_search)[0][0]
    print(i)
    # i = 50
    img = d['imgname'][i]
    gt = d['contact_label'][i]
    gt = np.reshape(gt, (1, -1))
                
    imgname = osp.basename(img)
    print(f'Image: {imgname}')
    for k, v in img_list_dict.items():
        if imgname in v: 
            object_class = k
            break
    print(f'Object: {object_class}')
    # pred_path = osp.join(args.dataset_root, object_class, imgname, 'chore-test', f'k1.smpl_colored_{args.th}.ply')
    pred_path = osp.join(args.dataset_root, object_class, imgname, f'k1.smpl_colored_{args.th}.obj')
    if not osp.exists(pred_path):
        print(f'Missing file: {pred_path}')
    pred_mesh = trimesh.load(pred_path, process=False)
        
    pred = np.zeros((1, 6890))
    for i in range(pred_mesh.visual.vertex_colors.shape[0]):
        c = pred_mesh.visual.vertex_colors[i]
        if collections.Counter(c) == collections.Counter([255, 0, 0, 255]):
            pred[0, i] = 1
                
    pre, rec, f1 = precision_recall_f1score(gt, pred)
    fp_err, _ = det_error_metric(pred, gt)  
        
    tot_pre += pre.sum()
    tot_rec += rec.sum()
    tot_f1 += f1.sum()
    tot_fp_err += fp_err.numpy().sum() 
            
    print(f'Test Precision: {tot_pre}')  
    print(f'Test Recall: {tot_rec}') 
    print(f'Test F1 Score: {tot_f1}') 
    print(f'Test FP Error: {tot_fp_err}')  

    # best_pre = 0
    # best_rec = 0
    # best_f1 = 0
    # best_fp_err = 0
    # best_imgname = ''
    # best_obj = ''

    # for i, img in tqdm(enumerate(d['imgname']), dynamic_ncols=True):
    #     gt = d['contact_label'][i]
    #     gt = np.reshape(gt, (1, -1))
                
    #     imgname = osp.basename(img)
    #     for k, v in img_list_dict.items():
    #         if imgname in v: 
    #             object_class = k
    #             break
    #     # pred_path = osp.join(args.dataset_root, object_class, imgname, 'chore-test', f'k1.smpl_colored_{args.th}.ply')
    #     pred_path = osp.join(args.dataset_root, object_class, imgname, f'k1.smpl_colored_{args.th}.obj')
    #     if not osp.exists(pred_path):
    #         # print(pred_path)
    #         continue
    #     pred_mesh = trimesh.load(pred_path, process=False)
        
    #     pred = np.zeros((1, 6890))
    #     for i in range(pred_mesh.visual.vertex_colors.shape[0]):
    #         c = pred_mesh.visual.vertex_colors[i]
    #         if collections.Counter(c) == collections.Counter([255, 0, 0, 255]):
    #             pred[0, i] = 1
                
    #     pre, rec, f1 = precision_recall_f1score(gt, pred)
    #     fp_err, _ = det_error_metric(pred, gt)  
        
    #     tot_pre += pre.sum()
    #     tot_rec += rec.sum()
    #     tot_f1 += f1.sum()
    #     tot_fp_err += fp_err.numpy().sum()

    #     if f1.sum() > best_f1:
    #         best_pre = pre.sum()
    #         best_rec = rec.sum()
    #         best_f1 = f1.sum()
    #         best_fp_err = fp_err.numpy().sum()
    #         best_imgname = imgname
    #         best_obj = object_class
        
    #     img_count += 1   
        
    # print(f'Dataset size: {img_count}')
    # print(f'Threshold: {args.th}\n')
    
    # print(f'Test Precision: {tot_pre/img_count}')  
    # print(f'Test Recall: {tot_rec/img_count}') 
    # print(f'Test F1 Score: {tot_f1/img_count}') 
    # print(f'Test FP Error: {tot_fp_err/img_count}\n')   

    # print(f'Best Precision: {best_pre}')  
    # print(f'Best Recall: {best_rec}') 
    # print(f'Best F1 Score: {best_f1}') 
    # print(f'Best FP Error: {best_fp_err}')  
    # print(f'Best Image: {best_imgname} and Object: {best_obj}')           
       
        
if __name__=='__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset_root', type=str, default='/is/cluster/fast/achatterjee/CHORE_DECO/hot_test')
    parser.add_argument('--npz_file', type=str, default='/is/cluster/fast/achatterjee/Datasets/hot_behave/hot_behave_test_reduced.npz')
    parser.add_argument('--json_file', type=str, default='/ps/scratch/ps_shared/stripathi/deco/4agniv/hot_behave_split/imgnames_per_object_dict_reduced.json')
    parser.add_argument('--th', type=float)
    args = parser.parse_args()
    
    main(args)