DECO / utils /hrnet.py
ac5113's picture
updated hrnet
4724540
import os
import torch
import torch.nn as nn
from loguru import logger
import torch.nn.functional as F
from yacs.config import CfgNode as CN
models = [
'hrnet_w32',
'hrnet_w48',
]
BN_MOMENTUM = 0.1
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion,
momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class HighResolutionModule(nn.Module):
def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
num_channels, fuse_method, multi_scale_output=True):
super(HighResolutionModule, self).__init__()
self._check_branches(
num_branches, blocks, num_blocks, num_inchannels, num_channels)
self.num_inchannels = num_inchannels
self.fuse_method = fuse_method
self.num_branches = num_branches
self.multi_scale_output = multi_scale_output
self.branches = self._make_branches(
num_branches, blocks, num_blocks, num_channels)
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(True)
def _check_branches(self, num_branches, blocks, num_blocks,
num_inchannels, num_channels):
if num_branches != len(num_blocks):
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
num_branches, len(num_blocks))
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
num_branches, len(num_channels))
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_inchannels):
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
num_branches, len(num_inchannels))
logger.error(error_msg)
raise ValueError(error_msg)
def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
stride=1):
downsample = None
if stride != 1 or \
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.num_inchannels[branch_index],
num_channels[branch_index] * block.expansion,
kernel_size=1, stride=stride, bias=False
),
nn.BatchNorm2d(
num_channels[branch_index] * block.expansion,
momentum=BN_MOMENTUM
),
)
layers = []
layers.append(
block(
self.num_inchannels[branch_index],
num_channels[branch_index],
stride,
downsample
)
)
self.num_inchannels[branch_index] = \
num_channels[branch_index] * block.expansion
for i in range(1, num_blocks[branch_index]):
layers.append(
block(
self.num_inchannels[branch_index],
num_channels[branch_index]
)
)
return nn.Sequential(*layers)
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
for i in range(num_branches):
branches.append(
self._make_one_branch(i, block, num_blocks, num_channels)
)
return nn.ModuleList(branches)
def _make_fuse_layers(self):
if self.num_branches == 1:
return None
num_branches = self.num_branches
num_inchannels = self.num_inchannels
fuse_layers = []
for i in range(num_branches if self.multi_scale_output else 1):
fuse_layer = []
for j in range(num_branches):
if j > i:
fuse_layer.append(
nn.Sequential(
nn.Conv2d(
num_inchannels[j],
num_inchannels[i],
1, 1, 0, bias=False
),
nn.BatchNorm2d(num_inchannels[i]),
nn.Upsample(scale_factor=2**(j-i), mode='nearest')
)
)
elif j == i:
fuse_layer.append(None)
else:
conv3x3s = []
for k in range(i-j):
if k == i - j - 1:
num_outchannels_conv3x3 = num_inchannels[i]
conv3x3s.append(
nn.Sequential(
nn.Conv2d(
num_inchannels[j],
num_outchannels_conv3x3,
3, 2, 1, bias=False
),
nn.BatchNorm2d(num_outchannels_conv3x3)
)
)
else:
num_outchannels_conv3x3 = num_inchannels[j]
conv3x3s.append(
nn.Sequential(
nn.Conv2d(
num_inchannels[j],
num_outchannels_conv3x3,
3, 2, 1, bias=False
),
nn.BatchNorm2d(num_outchannels_conv3x3),
nn.ReLU(True)
)
)
fuse_layer.append(nn.Sequential(*conv3x3s))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def get_num_inchannels(self):
return self.num_inchannels
def forward(self, x):
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
for j in range(1, self.num_branches):
if i == j:
y = y + x[j]
else:
y = y + self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
blocks_dict = {
'BASIC': BasicBlock,
'BOTTLENECK': Bottleneck
}
class PoseHighResolutionNet(nn.Module):
def __init__(self, cfg):
self.inplanes = 64
extra = cfg['MODEL']['EXTRA']
super(PoseHighResolutionNet, self).__init__()
self.cfg = extra
# stem net
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(Bottleneck, 64, 4)
self.stage2_cfg = extra['STAGE2']
num_channels = self.stage2_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage2_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))
]
self.transition1 = self._make_transition_layer([256], num_channels)
self.stage2, pre_stage_channels = self._make_stage(
self.stage2_cfg, num_channels)
self.stage3_cfg = extra['STAGE3']
num_channels = self.stage3_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage3_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))
]
self.transition2 = self._make_transition_layer(
pre_stage_channels, num_channels)
self.stage3, pre_stage_channels = self._make_stage(
self.stage3_cfg, num_channels)
self.stage4_cfg = extra['STAGE4']
num_channels = self.stage4_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage4_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))
]
self.transition3 = self._make_transition_layer(
pre_stage_channels, num_channels)
self.stage4, pre_stage_channels = self._make_stage(
self.stage4_cfg, num_channels, multi_scale_output=True)
self.final_layer = nn.Conv2d(
in_channels=pre_stage_channels[0],
out_channels=cfg['MODEL']['NUM_JOINTS'],
kernel_size=extra['FINAL_CONV_KERNEL'],
stride=1,
padding=1 if extra['FINAL_CONV_KERNEL'] == 3 else 0
)
self.pretrained_layers = extra['PRETRAINED_LAYERS']
if extra.DOWNSAMPLE and extra.USE_CONV:
self.downsample_stage_1 = self._make_downsample_layer(3, num_channel=self.stage2_cfg['NUM_CHANNELS'][0])
self.downsample_stage_2 = self._make_downsample_layer(2, num_channel=self.stage2_cfg['NUM_CHANNELS'][-1])
self.downsample_stage_3 = self._make_downsample_layer(1, num_channel=self.stage3_cfg['NUM_CHANNELS'][-1])
elif not extra.DOWNSAMPLE and extra.USE_CONV:
self.upsample_stage_2 = self._make_upsample_layer(1, num_channel=self.stage2_cfg['NUM_CHANNELS'][-1])
self.upsample_stage_3 = self._make_upsample_layer(2, num_channel=self.stage3_cfg['NUM_CHANNELS'][-1])
self.upsample_stage_4 = self._make_upsample_layer(3, num_channel=self.stage4_cfg['NUM_CHANNELS'][-1])
def _make_transition_layer(
self, num_channels_pre_layer, num_channels_cur_layer):
num_branches_cur = len(num_channels_cur_layer)
num_branches_pre = len(num_channels_pre_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(
nn.Sequential(
nn.Conv2d(
num_channels_pre_layer[i],
num_channels_cur_layer[i],
3, 1, 1, bias=False
),
nn.BatchNorm2d(num_channels_cur_layer[i]),
nn.ReLU(inplace=True)
)
)
else:
transition_layers.append(None)
else:
conv3x3s = []
for j in range(i+1-num_branches_pre):
inchannels = num_channels_pre_layer[-1]
outchannels = num_channels_cur_layer[i] \
if j == i-num_branches_pre else inchannels
conv3x3s.append(
nn.Sequential(
nn.Conv2d(
inchannels, outchannels, 3, 2, 1, bias=False
),
nn.BatchNorm2d(outchannels),
nn.ReLU(inplace=True)
)
)
transition_layers.append(nn.Sequential(*conv3x3s))
return nn.ModuleList(transition_layers)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False
),
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _make_stage(self, layer_config, num_inchannels,
multi_scale_output=True):
num_modules = layer_config['NUM_MODULES']
num_branches = layer_config['NUM_BRANCHES']
num_blocks = layer_config['NUM_BLOCKS']
num_channels = layer_config['NUM_CHANNELS']
block = blocks_dict[layer_config['BLOCK']]
fuse_method = layer_config['FUSE_METHOD']
modules = []
for i in range(num_modules):
# multi_scale_output is only used last module
if not multi_scale_output and i == num_modules - 1:
reset_multi_scale_output = False
else:
reset_multi_scale_output = True
modules.append(
HighResolutionModule(
num_branches,
block,
num_blocks,
num_inchannels,
num_channels,
fuse_method,
reset_multi_scale_output
)
)
num_inchannels = modules[-1].get_num_inchannels()
return nn.Sequential(*modules), num_inchannels
def _make_upsample_layer(self, num_layers, num_channel, kernel_size=3):
layers = []
for i in range(num_layers):
layers.append(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True))
layers.append(
nn.Conv2d(
in_channels=num_channel, out_channels=num_channel,
kernel_size=kernel_size, stride=1, padding=1, bias=False,
)
)
layers.append(nn.BatchNorm2d(num_channel, momentum=BN_MOMENTUM))
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def _make_downsample_layer(self, num_layers, num_channel, kernel_size=3):
layers = []
for i in range(num_layers):
layers.append(
nn.Conv2d(
in_channels=num_channel, out_channels=num_channel,
kernel_size=kernel_size, stride=2, padding=1, bias=False,
)
)
layers.append(nn.BatchNorm2d(num_channel, momentum=BN_MOMENTUM))
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = []
for i in range(self.stage2_cfg['NUM_BRANCHES']):
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
x_list = []
for i in range(self.stage3_cfg['NUM_BRANCHES']):
if self.transition2[i] is not None:
x_list.append(self.transition2[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage3(x_list)
x_list = []
for i in range(self.stage4_cfg['NUM_BRANCHES']):
if self.transition3[i] is not None:
x_list.append(self.transition3[i](y_list[-1]))
else:
x_list.append(y_list[i])
x = self.stage4(x_list)
if self.cfg.DOWNSAMPLE:
if self.cfg.USE_CONV:
# Downsampling with strided convolutions
x1 = self.downsample_stage_1(x[0])
x2 = self.downsample_stage_2(x[1])
x3 = self.downsample_stage_3(x[2])
x = torch.cat([x1, x2, x3, x[3]], 1)
else:
# Downsampling with interpolation
x0_h, x0_w = x[3].size(2), x[3].size(3)
x1 = F.interpolate(x[0], size=(x0_h, x0_w), mode='bilinear', align_corners=True)
x2 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=True)
x3 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=True)
x = torch.cat([x1, x2, x3, x[3]], 1)
else:
if self.cfg.USE_CONV:
# Upsampling with interpolations + convolutions
x1 = self.upsample_stage_2(x[1])
x2 = self.upsample_stage_3(x[2])
x3 = self.upsample_stage_4(x[3])
x = torch.cat([x[0], x1, x2, x3], 1)
else:
# Upsampling with interpolation
x0_h, x0_w = x[0].size(2), x[0].size(3)
x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=True)
x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=True)
x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=True)
x = torch.cat([x[0], x1, x2, x3], 1)
return x
def init_weights(self, pretrained=''):
logger.info('=> init weights from normal distribution')
for m in self.modules():
if isinstance(m, nn.Conv2d):
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
nn.init.normal_(m.weight, std=0.001)
for name, _ in m.named_parameters():
if name in ['bias']:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose2d):
nn.init.normal_(m.weight, std=0.001)
for name, _ in m.named_parameters():
if name in ['bias']:
nn.init.constant_(m.bias, 0)
if os.path.isfile(pretrained):
pretrained_state_dict = torch.load(pretrained)
logger.info('=> loading pretrained model {}'.format(pretrained))
need_init_state_dict = {}
for name, m in pretrained_state_dict.items():
if name.split('.')[0] in self.pretrained_layers \
or self.pretrained_layers[0] == '*':
need_init_state_dict[name] = m
self.load_state_dict(need_init_state_dict, strict=False)
elif pretrained:
logger.warning('IMPORTANT WARNING!! Please download pre-trained models if you are in TRAINING mode!')
# raise ValueError('{} is not exist!'.format(pretrained))
def get_pose_net(cfg, is_train):
model = PoseHighResolutionNet(cfg)
if is_train and cfg['MODEL']['INIT_WEIGHTS']:
model.init_weights(cfg['MODEL']['PRETRAINED'])
return model
def get_cfg_defaults(pretrained, width=32, downsample=False, use_conv=False):
# pose_multi_resoluton_net related params
HRNET = CN()
HRNET.PRETRAINED_LAYERS = [
'conv1', 'bn1', 'conv2', 'bn2', 'layer1', 'transition1',
'stage2', 'transition2', 'stage3', 'transition3', 'stage4',
]
HRNET.STEM_INPLANES = 64
HRNET.FINAL_CONV_KERNEL = 1
HRNET.STAGE2 = CN()
HRNET.STAGE2.NUM_MODULES = 1
HRNET.STAGE2.NUM_BRANCHES = 2
HRNET.STAGE2.NUM_BLOCKS = [4, 4]
HRNET.STAGE2.NUM_CHANNELS = [width, width*2]
HRNET.STAGE2.BLOCK = 'BASIC'
HRNET.STAGE2.FUSE_METHOD = 'SUM'
HRNET.STAGE3 = CN()
HRNET.STAGE3.NUM_MODULES = 4
HRNET.STAGE3.NUM_BRANCHES = 3
HRNET.STAGE3.NUM_BLOCKS = [4, 4, 4]
HRNET.STAGE3.NUM_CHANNELS = [width, width*2, width*4]
HRNET.STAGE3.BLOCK = 'BASIC'
HRNET.STAGE3.FUSE_METHOD = 'SUM'
HRNET.STAGE4 = CN()
HRNET.STAGE4.NUM_MODULES = 3
HRNET.STAGE4.NUM_BRANCHES = 4
HRNET.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
HRNET.STAGE4.NUM_CHANNELS = [width, width*2, width*4, width*8]
HRNET.STAGE4.BLOCK = 'BASIC'
HRNET.STAGE4.FUSE_METHOD = 'SUM'
HRNET.DOWNSAMPLE = downsample
HRNET.USE_CONV = use_conv
cfg = CN()
cfg.MODEL = CN()
cfg.MODEL.INIT_WEIGHTS = True
cfg.MODEL.PRETRAINED = pretrained # 'data/pretrained_models/hrnet_w32-36af842e.pth'
cfg.MODEL.EXTRA = HRNET
cfg.MODEL.NUM_JOINTS = 24
return cfg
def hrnet_w32(
pretrained=True,
pretrained_ckpt='data/weights/pose_hrnet_w32_256x192.pth',
downsample=False,
use_conv=False,
):
cfg = get_cfg_defaults(pretrained_ckpt, width=32, downsample=downsample, use_conv=use_conv)
return get_pose_net(cfg, is_train=True)
def hrnet_w48(
pretrained=True,
pretrained_ckpt='data/weights/pose_hrnet_w48_256x192.pth',
downsample=False,
use_conv=False,
):
cfg = get_cfg_defaults(pretrained_ckpt, width=48, downsample=downsample, use_conv=use_conv)
return get_pose_net(cfg, is_train=True)