Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import torch.nn as nn | |
from loguru import logger | |
import torch.nn.functional as F | |
from yacs.config import CfgNode as CN | |
models = [ | |
'hrnet_w32', | |
'hrnet_w48', | |
] | |
BN_MOMENTUM = 0.1 | |
def conv3x3(in_planes, out_planes, stride=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, | |
bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion, | |
momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class HighResolutionModule(nn.Module): | |
def __init__(self, num_branches, blocks, num_blocks, num_inchannels, | |
num_channels, fuse_method, multi_scale_output=True): | |
super(HighResolutionModule, self).__init__() | |
self._check_branches( | |
num_branches, blocks, num_blocks, num_inchannels, num_channels) | |
self.num_inchannels = num_inchannels | |
self.fuse_method = fuse_method | |
self.num_branches = num_branches | |
self.multi_scale_output = multi_scale_output | |
self.branches = self._make_branches( | |
num_branches, blocks, num_blocks, num_channels) | |
self.fuse_layers = self._make_fuse_layers() | |
self.relu = nn.ReLU(True) | |
def _check_branches(self, num_branches, blocks, num_blocks, | |
num_inchannels, num_channels): | |
if num_branches != len(num_blocks): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( | |
num_branches, len(num_blocks)) | |
logger.error(error_msg) | |
raise ValueError(error_msg) | |
if num_branches != len(num_channels): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( | |
num_branches, len(num_channels)) | |
logger.error(error_msg) | |
raise ValueError(error_msg) | |
if num_branches != len(num_inchannels): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( | |
num_branches, len(num_inchannels)) | |
logger.error(error_msg) | |
raise ValueError(error_msg) | |
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, | |
stride=1): | |
downsample = None | |
if stride != 1 or \ | |
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.num_inchannels[branch_index], | |
num_channels[branch_index] * block.expansion, | |
kernel_size=1, stride=stride, bias=False | |
), | |
nn.BatchNorm2d( | |
num_channels[branch_index] * block.expansion, | |
momentum=BN_MOMENTUM | |
), | |
) | |
layers = [] | |
layers.append( | |
block( | |
self.num_inchannels[branch_index], | |
num_channels[branch_index], | |
stride, | |
downsample | |
) | |
) | |
self.num_inchannels[branch_index] = \ | |
num_channels[branch_index] * block.expansion | |
for i in range(1, num_blocks[branch_index]): | |
layers.append( | |
block( | |
self.num_inchannels[branch_index], | |
num_channels[branch_index] | |
) | |
) | |
return nn.Sequential(*layers) | |
def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
branches = [] | |
for i in range(num_branches): | |
branches.append( | |
self._make_one_branch(i, block, num_blocks, num_channels) | |
) | |
return nn.ModuleList(branches) | |
def _make_fuse_layers(self): | |
if self.num_branches == 1: | |
return None | |
num_branches = self.num_branches | |
num_inchannels = self.num_inchannels | |
fuse_layers = [] | |
for i in range(num_branches if self.multi_scale_output else 1): | |
fuse_layer = [] | |
for j in range(num_branches): | |
if j > i: | |
fuse_layer.append( | |
nn.Sequential( | |
nn.Conv2d( | |
num_inchannels[j], | |
num_inchannels[i], | |
1, 1, 0, bias=False | |
), | |
nn.BatchNorm2d(num_inchannels[i]), | |
nn.Upsample(scale_factor=2**(j-i), mode='nearest') | |
) | |
) | |
elif j == i: | |
fuse_layer.append(None) | |
else: | |
conv3x3s = [] | |
for k in range(i-j): | |
if k == i - j - 1: | |
num_outchannels_conv3x3 = num_inchannels[i] | |
conv3x3s.append( | |
nn.Sequential( | |
nn.Conv2d( | |
num_inchannels[j], | |
num_outchannels_conv3x3, | |
3, 2, 1, bias=False | |
), | |
nn.BatchNorm2d(num_outchannels_conv3x3) | |
) | |
) | |
else: | |
num_outchannels_conv3x3 = num_inchannels[j] | |
conv3x3s.append( | |
nn.Sequential( | |
nn.Conv2d( | |
num_inchannels[j], | |
num_outchannels_conv3x3, | |
3, 2, 1, bias=False | |
), | |
nn.BatchNorm2d(num_outchannels_conv3x3), | |
nn.ReLU(True) | |
) | |
) | |
fuse_layer.append(nn.Sequential(*conv3x3s)) | |
fuse_layers.append(nn.ModuleList(fuse_layer)) | |
return nn.ModuleList(fuse_layers) | |
def get_num_inchannels(self): | |
return self.num_inchannels | |
def forward(self, x): | |
if self.num_branches == 1: | |
return [self.branches[0](x[0])] | |
for i in range(self.num_branches): | |
x[i] = self.branches[i](x[i]) | |
x_fuse = [] | |
for i in range(len(self.fuse_layers)): | |
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | |
for j in range(1, self.num_branches): | |
if i == j: | |
y = y + x[j] | |
else: | |
y = y + self.fuse_layers[i][j](x[j]) | |
x_fuse.append(self.relu(y)) | |
return x_fuse | |
blocks_dict = { | |
'BASIC': BasicBlock, | |
'BOTTLENECK': Bottleneck | |
} | |
class PoseHighResolutionNet(nn.Module): | |
def __init__(self, cfg): | |
self.inplanes = 64 | |
extra = cfg['MODEL']['EXTRA'] | |
super(PoseHighResolutionNet, self).__init__() | |
self.cfg = extra | |
# stem net | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, | |
bias=False) | |
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, | |
bias=False) | |
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.layer1 = self._make_layer(Bottleneck, 64, 4) | |
self.stage2_cfg = extra['STAGE2'] | |
num_channels = self.stage2_cfg['NUM_CHANNELS'] | |
block = blocks_dict[self.stage2_cfg['BLOCK']] | |
num_channels = [ | |
num_channels[i] * block.expansion for i in range(len(num_channels)) | |
] | |
self.transition1 = self._make_transition_layer([256], num_channels) | |
self.stage2, pre_stage_channels = self._make_stage( | |
self.stage2_cfg, num_channels) | |
self.stage3_cfg = extra['STAGE3'] | |
num_channels = self.stage3_cfg['NUM_CHANNELS'] | |
block = blocks_dict[self.stage3_cfg['BLOCK']] | |
num_channels = [ | |
num_channels[i] * block.expansion for i in range(len(num_channels)) | |
] | |
self.transition2 = self._make_transition_layer( | |
pre_stage_channels, num_channels) | |
self.stage3, pre_stage_channels = self._make_stage( | |
self.stage3_cfg, num_channels) | |
self.stage4_cfg = extra['STAGE4'] | |
num_channels = self.stage4_cfg['NUM_CHANNELS'] | |
block = blocks_dict[self.stage4_cfg['BLOCK']] | |
num_channels = [ | |
num_channels[i] * block.expansion for i in range(len(num_channels)) | |
] | |
self.transition3 = self._make_transition_layer( | |
pre_stage_channels, num_channels) | |
self.stage4, pre_stage_channels = self._make_stage( | |
self.stage4_cfg, num_channels, multi_scale_output=True) | |
self.final_layer = nn.Conv2d( | |
in_channels=pre_stage_channels[0], | |
out_channels=cfg['MODEL']['NUM_JOINTS'], | |
kernel_size=extra['FINAL_CONV_KERNEL'], | |
stride=1, | |
padding=1 if extra['FINAL_CONV_KERNEL'] == 3 else 0 | |
) | |
self.pretrained_layers = extra['PRETRAINED_LAYERS'] | |
if extra.DOWNSAMPLE and extra.USE_CONV: | |
self.downsample_stage_1 = self._make_downsample_layer(3, num_channel=self.stage2_cfg['NUM_CHANNELS'][0]) | |
self.downsample_stage_2 = self._make_downsample_layer(2, num_channel=self.stage2_cfg['NUM_CHANNELS'][-1]) | |
self.downsample_stage_3 = self._make_downsample_layer(1, num_channel=self.stage3_cfg['NUM_CHANNELS'][-1]) | |
elif not extra.DOWNSAMPLE and extra.USE_CONV: | |
self.upsample_stage_2 = self._make_upsample_layer(1, num_channel=self.stage2_cfg['NUM_CHANNELS'][-1]) | |
self.upsample_stage_3 = self._make_upsample_layer(2, num_channel=self.stage3_cfg['NUM_CHANNELS'][-1]) | |
self.upsample_stage_4 = self._make_upsample_layer(3, num_channel=self.stage4_cfg['NUM_CHANNELS'][-1]) | |
def _make_transition_layer( | |
self, num_channels_pre_layer, num_channels_cur_layer): | |
num_branches_cur = len(num_channels_cur_layer) | |
num_branches_pre = len(num_channels_pre_layer) | |
transition_layers = [] | |
for i in range(num_branches_cur): | |
if i < num_branches_pre: | |
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
transition_layers.append( | |
nn.Sequential( | |
nn.Conv2d( | |
num_channels_pre_layer[i], | |
num_channels_cur_layer[i], | |
3, 1, 1, bias=False | |
), | |
nn.BatchNorm2d(num_channels_cur_layer[i]), | |
nn.ReLU(inplace=True) | |
) | |
) | |
else: | |
transition_layers.append(None) | |
else: | |
conv3x3s = [] | |
for j in range(i+1-num_branches_pre): | |
inchannels = num_channels_pre_layer[-1] | |
outchannels = num_channels_cur_layer[i] \ | |
if j == i-num_branches_pre else inchannels | |
conv3x3s.append( | |
nn.Sequential( | |
nn.Conv2d( | |
inchannels, outchannels, 3, 2, 1, bias=False | |
), | |
nn.BatchNorm2d(outchannels), | |
nn.ReLU(inplace=True) | |
) | |
) | |
transition_layers.append(nn.Sequential(*conv3x3s)) | |
return nn.ModuleList(transition_layers) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False | |
), | |
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def _make_stage(self, layer_config, num_inchannels, | |
multi_scale_output=True): | |
num_modules = layer_config['NUM_MODULES'] | |
num_branches = layer_config['NUM_BRANCHES'] | |
num_blocks = layer_config['NUM_BLOCKS'] | |
num_channels = layer_config['NUM_CHANNELS'] | |
block = blocks_dict[layer_config['BLOCK']] | |
fuse_method = layer_config['FUSE_METHOD'] | |
modules = [] | |
for i in range(num_modules): | |
# multi_scale_output is only used last module | |
if not multi_scale_output and i == num_modules - 1: | |
reset_multi_scale_output = False | |
else: | |
reset_multi_scale_output = True | |
modules.append( | |
HighResolutionModule( | |
num_branches, | |
block, | |
num_blocks, | |
num_inchannels, | |
num_channels, | |
fuse_method, | |
reset_multi_scale_output | |
) | |
) | |
num_inchannels = modules[-1].get_num_inchannels() | |
return nn.Sequential(*modules), num_inchannels | |
def _make_upsample_layer(self, num_layers, num_channel, kernel_size=3): | |
layers = [] | |
for i in range(num_layers): | |
layers.append(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)) | |
layers.append( | |
nn.Conv2d( | |
in_channels=num_channel, out_channels=num_channel, | |
kernel_size=kernel_size, stride=1, padding=1, bias=False, | |
) | |
) | |
layers.append(nn.BatchNorm2d(num_channel, momentum=BN_MOMENTUM)) | |
layers.append(nn.ReLU(inplace=True)) | |
return nn.Sequential(*layers) | |
def _make_downsample_layer(self, num_layers, num_channel, kernel_size=3): | |
layers = [] | |
for i in range(num_layers): | |
layers.append( | |
nn.Conv2d( | |
in_channels=num_channel, out_channels=num_channel, | |
kernel_size=kernel_size, stride=2, padding=1, bias=False, | |
) | |
) | |
layers.append(nn.BatchNorm2d(num_channel, momentum=BN_MOMENTUM)) | |
layers.append(nn.ReLU(inplace=True)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.relu(x) | |
x = self.layer1(x) | |
x_list = [] | |
for i in range(self.stage2_cfg['NUM_BRANCHES']): | |
if self.transition1[i] is not None: | |
x_list.append(self.transition1[i](x)) | |
else: | |
x_list.append(x) | |
y_list = self.stage2(x_list) | |
x_list = [] | |
for i in range(self.stage3_cfg['NUM_BRANCHES']): | |
if self.transition2[i] is not None: | |
x_list.append(self.transition2[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
y_list = self.stage3(x_list) | |
x_list = [] | |
for i in range(self.stage4_cfg['NUM_BRANCHES']): | |
if self.transition3[i] is not None: | |
x_list.append(self.transition3[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
x = self.stage4(x_list) | |
if self.cfg.DOWNSAMPLE: | |
if self.cfg.USE_CONV: | |
# Downsampling with strided convolutions | |
x1 = self.downsample_stage_1(x[0]) | |
x2 = self.downsample_stage_2(x[1]) | |
x3 = self.downsample_stage_3(x[2]) | |
x = torch.cat([x1, x2, x3, x[3]], 1) | |
else: | |
# Downsampling with interpolation | |
x0_h, x0_w = x[3].size(2), x[3].size(3) | |
x1 = F.interpolate(x[0], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
x2 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
x3 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
x = torch.cat([x1, x2, x3, x[3]], 1) | |
else: | |
if self.cfg.USE_CONV: | |
# Upsampling with interpolations + convolutions | |
x1 = self.upsample_stage_2(x[1]) | |
x2 = self.upsample_stage_3(x[2]) | |
x3 = self.upsample_stage_4(x[3]) | |
x = torch.cat([x[0], x1, x2, x3], 1) | |
else: | |
# Upsampling with interpolation | |
x0_h, x0_w = x[0].size(2), x[0].size(3) | |
x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
x = torch.cat([x[0], x1, x2, x3], 1) | |
return x | |
def init_weights(self, pretrained=''): | |
logger.info('=> init weights from normal distribution') | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
nn.init.normal_(m.weight, std=0.001) | |
for name, _ in m.named_parameters(): | |
if name in ['bias']: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.ConvTranspose2d): | |
nn.init.normal_(m.weight, std=0.001) | |
for name, _ in m.named_parameters(): | |
if name in ['bias']: | |
nn.init.constant_(m.bias, 0) | |
if os.path.isfile(pretrained): | |
pretrained_state_dict = torch.load(pretrained) | |
logger.info('=> loading pretrained model {}'.format(pretrained)) | |
need_init_state_dict = {} | |
for name, m in pretrained_state_dict.items(): | |
if name.split('.')[0] in self.pretrained_layers \ | |
or self.pretrained_layers[0] == '*': | |
need_init_state_dict[name] = m | |
self.load_state_dict(need_init_state_dict, strict=False) | |
elif pretrained: | |
logger.warning('IMPORTANT WARNING!! Please download pre-trained models if you are in TRAINING mode!') | |
# raise ValueError('{} is not exist!'.format(pretrained)) | |
def get_pose_net(cfg, is_train): | |
model = PoseHighResolutionNet(cfg) | |
if is_train and cfg['MODEL']['INIT_WEIGHTS']: | |
model.init_weights(cfg['MODEL']['PRETRAINED']) | |
return model | |
def get_cfg_defaults(pretrained, width=32, downsample=False, use_conv=False): | |
# pose_multi_resoluton_net related params | |
HRNET = CN() | |
HRNET.PRETRAINED_LAYERS = [ | |
'conv1', 'bn1', 'conv2', 'bn2', 'layer1', 'transition1', | |
'stage2', 'transition2', 'stage3', 'transition3', 'stage4', | |
] | |
HRNET.STEM_INPLANES = 64 | |
HRNET.FINAL_CONV_KERNEL = 1 | |
HRNET.STAGE2 = CN() | |
HRNET.STAGE2.NUM_MODULES = 1 | |
HRNET.STAGE2.NUM_BRANCHES = 2 | |
HRNET.STAGE2.NUM_BLOCKS = [4, 4] | |
HRNET.STAGE2.NUM_CHANNELS = [width, width*2] | |
HRNET.STAGE2.BLOCK = 'BASIC' | |
HRNET.STAGE2.FUSE_METHOD = 'SUM' | |
HRNET.STAGE3 = CN() | |
HRNET.STAGE3.NUM_MODULES = 4 | |
HRNET.STAGE3.NUM_BRANCHES = 3 | |
HRNET.STAGE3.NUM_BLOCKS = [4, 4, 4] | |
HRNET.STAGE3.NUM_CHANNELS = [width, width*2, width*4] | |
HRNET.STAGE3.BLOCK = 'BASIC' | |
HRNET.STAGE3.FUSE_METHOD = 'SUM' | |
HRNET.STAGE4 = CN() | |
HRNET.STAGE4.NUM_MODULES = 3 | |
HRNET.STAGE4.NUM_BRANCHES = 4 | |
HRNET.STAGE4.NUM_BLOCKS = [4, 4, 4, 4] | |
HRNET.STAGE4.NUM_CHANNELS = [width, width*2, width*4, width*8] | |
HRNET.STAGE4.BLOCK = 'BASIC' | |
HRNET.STAGE4.FUSE_METHOD = 'SUM' | |
HRNET.DOWNSAMPLE = downsample | |
HRNET.USE_CONV = use_conv | |
cfg = CN() | |
cfg.MODEL = CN() | |
cfg.MODEL.INIT_WEIGHTS = True | |
cfg.MODEL.PRETRAINED = pretrained # 'data/pretrained_models/hrnet_w32-36af842e.pth' | |
cfg.MODEL.EXTRA = HRNET | |
cfg.MODEL.NUM_JOINTS = 24 | |
return cfg | |
def hrnet_w32( | |
pretrained=True, | |
pretrained_ckpt='data/weights/pose_hrnet_w32_256x192.pth', | |
downsample=False, | |
use_conv=False, | |
): | |
cfg = get_cfg_defaults(pretrained_ckpt, width=32, downsample=downsample, use_conv=use_conv) | |
return get_pose_net(cfg, is_train=True) | |
def hrnet_w48( | |
pretrained=True, | |
pretrained_ckpt='data/weights/pose_hrnet_w48_256x192.pth', | |
downsample=False, | |
use_conv=False, | |
): | |
cfg = get_cfg_defaults(pretrained_ckpt, width=48, downsample=downsample, use_conv=use_conv) | |
return get_pose_net(cfg, is_train=True) |