File size: 2,196 Bytes
e72f4c2
bdac835
 
e72f4c2
bdac835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e72f4c2
bdac835
 
 
e72f4c2
bdac835
 
 
 
 
 
 
 
 
 
 
 
 
e72f4c2
bdac835
 
 
e72f4c2
bdac835
 
 
 
 
 
 
 
 
 
 
 
 
e72f4c2
bdac835
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from torch import nn, Tensor
    
class UpResConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size) -> None:
        super(UpResConvBlock, self).__init__()
        
        self.residual = nn.Sequential(
            nn.Upsample(scale_factor=2),
            nn.Conv1d(in_channels, out_channels, 1, 1, bias=False),
            )
        
        self.main = nn.Sequential(
            nn.Upsample(scale_factor=2),
            nn.Conv1d(in_channels, out_channels, kernel_size, 1),
            nn.GroupNorm(1, out_channels),
            nn.GELU(),
            nn.Conv1d(out_channels, out_channels, kernel_size, 1),
            nn.GroupNorm(1, out_channels),
            nn.GELU()
        )

    def forward(self, x: Tensor) -> Tensor:
        return self.main(x) + self.residual(x)

class DownResConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size) -> None:
        super(DownResConvBlock, self).__init__()
        
        self.residual = nn.Conv1d(in_channels, out_channels, 1, 2, bias=False)
            
        self.main = nn.Sequential(            
            nn.Conv1d(in_channels, out_channels, kernel_size, 2),
            nn.GroupNorm(1, out_channels),
            nn.GELU(),
            nn.Conv1d(out_channels, out_channels, kernel_size, 1),
            nn.GroupNorm(1, out_channels),
            nn.GELU() 
        )
    
    def forward(self, x: Tensor) -> Tensor:
        return self.main(x) + self.residual(x)
    
class ResConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size) -> None:
        super(ResConvBlock, self).__init__()
        
        self.residual = nn.Identity() if in_channels == out_channels else nn.Conv1d(in_channels, out_channels, 1, bias=False)
            
        self.main = nn.Sequential(            
            nn.Conv1d(in_channels, out_channels, kernel_size),
            nn.GroupNorm(1, out_channels),
            nn.GELU(),
            nn.Conv1d(out_channels, out_channels, kernel_size),
            nn.GroupNorm(1, out_channels),
            nn.GELU() 
        )
    
    def forward(self, x: Tensor) -> Tensor:
        return self.main(x) + self.residual(x)