File size: 6,473 Bytes
bdac835
 
 
 
 
 
e72f4c2
 
bdac835
 
e72f4c2
 
bdac835
 
 
e72f4c2
 
bdac835
 
e72f4c2
 
 
bdac835
e72f4c2
bdac835
e72f4c2
bdac835
 
 
 
e72f4c2
bdac835
 
 
e72f4c2
bdac835
 
 
 
e72f4c2
bdac835
 
e72f4c2
 
bdac835
e72f4c2
 
bdac835
 
 
e72f4c2
 
bdac835
 
e72f4c2
bdac835
 
e72f4c2
 
bdac835
 
e72f4c2
bdac835
 
 
 
e72f4c2
bdac835
 
 
e72f4c2
bdac835
 
 
e72f4c2
bdac835
e72f4c2
 
 
 
 
 
 
 
bdac835
e72f4c2
bdac835
e72f4c2
bdac835
 
e72f4c2
bdac835
 
 
 
 
e72f4c2
bdac835
 
 
e72f4c2
 
 
 
bdac835
 
 
e72f4c2
 
 
bdac835
 
e72f4c2
 
bdac835
 
 
e72f4c2
bdac835
 
 
e72f4c2
 
bdac835
 
 
 
 
e72f4c2
bdac835
 
e72f4c2
 
 
 
 
 
 
 
 
bdac835
e72f4c2
bdac835
 
e72f4c2
 
 
bdac835
e72f4c2
 
 
 
bdac835
 
 
 
 
 
e72f4c2
bdac835
 
 
 
 
e72f4c2
 
 
 
bdac835
 
 
e72f4c2
 
 
bdac835
 
 
e72f4c2
bdac835
 
 
e72f4c2
bdac835
 
e72f4c2
bdac835
e72f4c2
bdac835
 
 
 
e72f4c2
 
bdac835
 
 
 
e72f4c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
from torch import nn, Tensor
from torch.optim import Optimizer
from .blocks import UpResConvBlock, DownResConvBlock
import lightning as L
from auraloss.freq import MultiResolutionSTFTLoss
from typing import Sequence


class Encoder(nn.Module):
    def __init__(
        self,
        in_channels: int,
        in_features: int,
        out_features: int,
        channels: Sequence[int],
    ) -> None:
        super(Encoder, self).__init__()

        assert (
            in_features % 2 ** len(channels) == 0
        ), f"in_features ({in_features}) must be a multiple of downscale factor ({2**len(channels)})"

        modules = [nn.Conv1d(in_channels, channels[0], 1), nn.GELU()]

        for in_channel, out_channel in zip(channels, channels[1:] + [channels[-1]]):
            modules += [
                DownResConvBlock(in_channel, out_channel, 1),
            ]

        n_features = int(in_features * 0.5 ** len(channels))

        modules += [
            nn.Flatten(),
            nn.Linear(n_features * channels[-1], 2 * out_features),
        ]

        self.net = nn.Sequential(*modules)

    def forward(self, x: Tensor) -> Tensor:
        mean, logvar = self.net(x).chunk(2, dim=1)
        return mean, logvar


class Decoder(nn.Module):
    def __init__(
        self,
        out_channels: int,
        in_features: int,
        out_features: int,
        channels: Sequence[int],
    ) -> None:
        super(Decoder, self).__init__()

        n_features = int(out_features / 2 ** len(channels))

        modules = [
            nn.Linear(in_features, n_features * channels[0]),
            nn.Unflatten(-1, (channels[0], n_features)),
        ]

        for in_channel, out_channel in zip(channels, channels[1:] + [channels[-1]]):
            modules += [
                UpResConvBlock(in_channel, out_channel, 1),
            ]

        modules += [nn.Conv1d(channels[-1], out_channels, 1), nn.GELU()]

        self.net = nn.Sequential(*modules)

    def forward(self, x: Tensor) -> Tensor:
        x = torch.tanh(self.net(x))
        return x


class VAE(L.LightningModule):
    def __init__(
        self,
        io_channels: int,
        io_features: int,
        latent_features: int,
        channels: Sequence[int],
        learning_rate: float,
    ) -> None:
        super().__init__()

        self.encoder = Encoder(io_channels, io_features, latent_features, channels)

        channels.reverse()
        self.decoder = Decoder(io_channels, latent_features, io_features, channels)

        self.latent_features = latent_features
        self.audio_loss_func = MultiResolutionSTFTLoss()
        self.learning_rate = learning_rate

    @torch.no_grad()
    def sample(self, eps: Tensor = None) -> Tensor:
        if eps is None:
            eps = torch.rand((1, self.latent_features))
        return self.decoder(eps)

    def loss_function(
        self, x: Tensor, x_hat: Tensor, mean: Tensor, logvar: Tensor
    ) -> Tensor:
        audio_loss = self.audio_loss_func(x, x_hat)
        kld_loss = -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp())
        return audio_loss + kld_loss

    def reparameterize(self, mean: Tensor, logvar: Tensor) -> Tensor:
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return eps * std + mean

    def forward(self, x: Tensor) -> tuple[Tensor]:
        mean, logvar = self.encoder(x)
        z = self.reparameterize(mean, logvar)
        return self.decoder(z), mean, logvar

    def training_step(self, batch: Tensor, batch_idx: int, log: bool = True) -> Tensor:
        x_hat, mean, logvar = self.forward(batch)
        loss = self.loss_function(batch, x_hat, mean, logvar)
        if log:
            self.log("train_loss", loss, prog_bar=True)
        return loss

    def configure_optimizers(self) -> Optimizer:
        optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate)
        return optimizer


class CVAE(L.LightningModule):
    def __init__(
        self,
        io_channels: int,
        io_features: int,
        latent_features: int,
        channels: Sequence[int],
        num_classes: int,
        learning_rate: float,
    ):
        super().__init__()

        self.class_embedder = nn.Linear(num_classes, io_features)
        self.data_embedder = nn.Conv1d(io_channels, io_channels, kernel_size=1)

        self.encoder = Encoder(io_channels + 1, io_features, latent_features, channels)

        channels.reverse()
        self.decoder = Decoder(
            io_channels, latent_features + num_classes, io_features, channels
        )

        self.num_classes = num_classes
        self.latent_features = latent_features
        self.audio_loss_func = MultiResolutionSTFTLoss()
        self.learning_rate = learning_rate

    @torch.no_grad()
    def sample(self, c, eps=None) -> Tensor:
        c = nn.functional.one_hot(c, num_classes=self.num_classes).float().unsqueeze(0)
        if eps is None:
            eps = torch.rand((1, self.latent_features))
        z = torch.cat([eps, c], dim=1)
        return self.decoder(z)

    def loss_function(
        self, x: Tensor, x_hat: Tensor, mean: Tensor, logvar: Tensor
    ) -> Tensor:
        audio_loss = self.audio_loss_func(x, x_hat)
        kld_loss = -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp())
        return audio_loss + kld_loss

    def reparameterize(self, mean: Tensor, logvar: Tensor) -> Tensor:
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return eps * std + mean

    def forward(self, x: Tensor, c: Tensor) -> tuple[Tensor]:
        c = nn.functional.one_hot(c, num_classes=self.num_classes).float()
        c_embedding = self.class_embedder(c).unsqueeze(1)
        x_embedding = self.data_embedder(x)
        x = torch.cat([x_embedding, c_embedding], dim=1)
        mean, logvar = self.encoder(x)
        z = self.reparameterize(mean, logvar)
        z = torch.cat([z, c], dim=1)
        return self.decoder(z), mean, logvar

    def training_step(self, batch: Tensor, batch_idx: int, log: bool = True) -> Tensor:
        x, c = batch
        x_hat, mean, logvar = self.forward(x, c)
        loss = self.loss_function(x, x_hat, mean, logvar)
        if log:
            self.log("train_loss", loss, prog_bar=True)
        return loss

    def configure_optimizers(self) -> Optimizer:
        optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate)
        return optimizer