Spaces:
Sleeping
Sleeping
File size: 6,473 Bytes
bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 bdac835 e72f4c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import torch
from torch import nn, Tensor
from torch.optim import Optimizer
from .blocks import UpResConvBlock, DownResConvBlock
import lightning as L
from auraloss.freq import MultiResolutionSTFTLoss
from typing import Sequence
class Encoder(nn.Module):
def __init__(
self,
in_channels: int,
in_features: int,
out_features: int,
channels: Sequence[int],
) -> None:
super(Encoder, self).__init__()
assert (
in_features % 2 ** len(channels) == 0
), f"in_features ({in_features}) must be a multiple of downscale factor ({2**len(channels)})"
modules = [nn.Conv1d(in_channels, channels[0], 1), nn.GELU()]
for in_channel, out_channel in zip(channels, channels[1:] + [channels[-1]]):
modules += [
DownResConvBlock(in_channel, out_channel, 1),
]
n_features = int(in_features * 0.5 ** len(channels))
modules += [
nn.Flatten(),
nn.Linear(n_features * channels[-1], 2 * out_features),
]
self.net = nn.Sequential(*modules)
def forward(self, x: Tensor) -> Tensor:
mean, logvar = self.net(x).chunk(2, dim=1)
return mean, logvar
class Decoder(nn.Module):
def __init__(
self,
out_channels: int,
in_features: int,
out_features: int,
channels: Sequence[int],
) -> None:
super(Decoder, self).__init__()
n_features = int(out_features / 2 ** len(channels))
modules = [
nn.Linear(in_features, n_features * channels[0]),
nn.Unflatten(-1, (channels[0], n_features)),
]
for in_channel, out_channel in zip(channels, channels[1:] + [channels[-1]]):
modules += [
UpResConvBlock(in_channel, out_channel, 1),
]
modules += [nn.Conv1d(channels[-1], out_channels, 1), nn.GELU()]
self.net = nn.Sequential(*modules)
def forward(self, x: Tensor) -> Tensor:
x = torch.tanh(self.net(x))
return x
class VAE(L.LightningModule):
def __init__(
self,
io_channels: int,
io_features: int,
latent_features: int,
channels: Sequence[int],
learning_rate: float,
) -> None:
super().__init__()
self.encoder = Encoder(io_channels, io_features, latent_features, channels)
channels.reverse()
self.decoder = Decoder(io_channels, latent_features, io_features, channels)
self.latent_features = latent_features
self.audio_loss_func = MultiResolutionSTFTLoss()
self.learning_rate = learning_rate
@torch.no_grad()
def sample(self, eps: Tensor = None) -> Tensor:
if eps is None:
eps = torch.rand((1, self.latent_features))
return self.decoder(eps)
def loss_function(
self, x: Tensor, x_hat: Tensor, mean: Tensor, logvar: Tensor
) -> Tensor:
audio_loss = self.audio_loss_func(x, x_hat)
kld_loss = -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp())
return audio_loss + kld_loss
def reparameterize(self, mean: Tensor, logvar: Tensor) -> Tensor:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps * std + mean
def forward(self, x: Tensor) -> tuple[Tensor]:
mean, logvar = self.encoder(x)
z = self.reparameterize(mean, logvar)
return self.decoder(z), mean, logvar
def training_step(self, batch: Tensor, batch_idx: int, log: bool = True) -> Tensor:
x_hat, mean, logvar = self.forward(batch)
loss = self.loss_function(batch, x_hat, mean, logvar)
if log:
self.log("train_loss", loss, prog_bar=True)
return loss
def configure_optimizers(self) -> Optimizer:
optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate)
return optimizer
class CVAE(L.LightningModule):
def __init__(
self,
io_channels: int,
io_features: int,
latent_features: int,
channels: Sequence[int],
num_classes: int,
learning_rate: float,
):
super().__init__()
self.class_embedder = nn.Linear(num_classes, io_features)
self.data_embedder = nn.Conv1d(io_channels, io_channels, kernel_size=1)
self.encoder = Encoder(io_channels + 1, io_features, latent_features, channels)
channels.reverse()
self.decoder = Decoder(
io_channels, latent_features + num_classes, io_features, channels
)
self.num_classes = num_classes
self.latent_features = latent_features
self.audio_loss_func = MultiResolutionSTFTLoss()
self.learning_rate = learning_rate
@torch.no_grad()
def sample(self, c, eps=None) -> Tensor:
c = nn.functional.one_hot(c, num_classes=self.num_classes).float().unsqueeze(0)
if eps is None:
eps = torch.rand((1, self.latent_features))
z = torch.cat([eps, c], dim=1)
return self.decoder(z)
def loss_function(
self, x: Tensor, x_hat: Tensor, mean: Tensor, logvar: Tensor
) -> Tensor:
audio_loss = self.audio_loss_func(x, x_hat)
kld_loss = -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp())
return audio_loss + kld_loss
def reparameterize(self, mean: Tensor, logvar: Tensor) -> Tensor:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps * std + mean
def forward(self, x: Tensor, c: Tensor) -> tuple[Tensor]:
c = nn.functional.one_hot(c, num_classes=self.num_classes).float()
c_embedding = self.class_embedder(c).unsqueeze(1)
x_embedding = self.data_embedder(x)
x = torch.cat([x_embedding, c_embedding], dim=1)
mean, logvar = self.encoder(x)
z = self.reparameterize(mean, logvar)
z = torch.cat([z, c], dim=1)
return self.decoder(z), mean, logvar
def training_step(self, batch: Tensor, batch_idx: int, log: bool = True) -> Tensor:
x, c = batch
x_hat, mean, logvar = self.forward(x, c)
loss = self.loss_function(x, x_hat, mean, logvar)
if log:
self.log("train_loss", loss, prog_bar=True)
return loss
def configure_optimizers(self) -> Optimizer:
optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate)
return optimizer
|