File size: 6,845 Bytes
d6eab59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b74f98
d6eab59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import HfApi
import re
from typing import List, Dict
import subprocess
import os
import black
from pylint import lint
from io import StringIO
import sys

class TextGenerationTool:
    def __init__(self, llm: str):
        self.llm = llm
        self.tokenizer = AutoTokenizer.from_pretrained(llm)
        self.model = AutoModelForCausalLM.from_pretrained(llm)

    def generate_text(self, prompt: str, max_length: int = 50) -> str:
        inputs = self.tokenizer(prompt, return_tensors="pt")
        outputs = self.model.generate(**inputs, max_length=max_length)
        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

class AIAgent:
    def __init__(self, name: str, description: str, skills: List[str], llm: str):
        self.name = name
        self.description = description
        self.skills = skills
        self.text_gen_tool = TextGenerationTool(llm)
        self._hf_api = HfApi()  # Initialize HfApi here

    def generate_agent_response(self, prompt: str) -> str:
        return self.text_gen_tool.generate_text(prompt)

    def create_agent_prompt(self) -> str:
        skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
        agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
        return agent_prompt

    def autonomous_build(self, chat_history: List[tuple[str, str]], workspace_projects: Dict[str, Dict], 
                        project_name: str, selected_model: str, hf_token: str) -> tuple[str, str]:
        summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
        summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
        next_step = "Based on the current state, the next logical step is to implement the main application logic."
        return summary, next_step

    def deploy_built_space_to_hf(self, project_name: str) -> str:
        space_content = generate_space_content(project_name)
        repository = self._hf_api.create_repo(
            repo_id=project_name, 
            private=True,
            token=hf_token,
            exist_ok=True,
            space_sdk="streamlit"
        )
        self._hf_api.upload_file(
            path_or_fileobj=space_content,
            path_in_repo="app.py",
            repo_id=project_name,
            repo_type="space",
            token=hf_token
        )
        return repository.name

    def has_valid_hf_token(self) -> bool:
        return self._hf_api.whoami(token=hf_token) is not None

def process_input(input_text: str) -> str:
    chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium", tokenizer="microsoft/DialoGPT-medium", clean_up_tokenization_spaces=True)
    response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
    return response

def run_code(code: str) -> str:
    try:
        result = subprocess.run(code, shell=True, capture_output=True, text=True)
        return result.stdout
    except Exception as e:
        return str(e)

def workspace_interface(project_name: str) -> str:
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if not os.path.exists(project_path):
        os.makedirs(project_path)
        st.session_state.workspace_projects[project_name] = {'files': []}
        return f"Project '{project_name}' created successfully."
    else:
        return f"Project '{project_name}' already exists."

def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if not os.path.exists(project_path):
        return f"Project '{project_name}' does not exist."
    
    file_path = os.path.join(project_path, file_name)
    with open(file_path, "w") as file:
        file.write(code)
    st.session_state.workspace_projects[project_name]['files'].append(file_name)
    return f"Code added to '{file_name}' in project '{project_name}'."

def display_chat_history(chat_history: List[tuple[str, str]]) -> str:
    return "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])

def display_workspace_projects(workspace_projects: Dict[str, Dict]) -> str:
    return "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])

def generate_space_content(project_name: str) -> str:
    # Logic to generate the Streamlit app content based on project_name
    # ... (This is where you'll need to implement the actual code generation)
    return "import streamlit as st\nst.title('My Streamlit App')\nst.write('Hello, world!')"

def analyze_code(code: str) -> List[str]:
    hints = []
    
    # Example pointer: Suggest using list comprehensions
    if re.search(r'for .* in .*:\n\s+.*\.append\(', code):
        hints.append("Consider using a list comprehension instead of a loop for appending to a list.")
    
    # Example pointer: Recommend using f-strings for string formatting
    if re.search(r'\".*\%s\"|\'.*\%s\'', code) or re.search(r'\".*\%d\"|\'.*\%d\'', code):
        hints.append("Consider using f-strings for cleaner and more efficient string formatting.")
    
    # Example pointer: Avoid using global variables
    if re.search(r'\bglobal\b', code):
        hints.append("Avoid using global variables. Consider passing parameters or using classes.")
    
    # Example pointer: Recommend using `with` statement for file operations
    if re.search(r'open\(.+\)', code) and not re.search(r'with open\(.+\)', code):
        hints.append("Consider using the `with` statement when opening files to ensure proper resource management.")
    
    return hints

def get_code_completion(prompt: str) -> str:
    # Generate code completion based on the current code input
    # Use max_new_tokens instead of max_length
    completions = code_generator(prompt, max_new_tokens=50, num_return_sequences=1) 
    return completions[0]['generated_text']

def lint_code(code: str) -> List[str]:
    # Capture pylint output
    pylint_output = StringIO()
    sys.stdout = pylint_output
    
    # Run pylint on the provided code
    lint.Run(['--from-stdin'], do_exit=False, input=code)
    
    # Reset stdout
    sys.stdout = sys.__stdout__
    
    # Extract pylint messages
    messages = pylint_output.getvalue().splitlines()
    
    return messages

def format_code(code: str) -> str:
    # Format code using Black
    formatted_code = black.format_str(code, mode=black.FileMode())
    return formatted_code