Spaces:
Build error
Build error
File size: 6,845 Bytes
d6eab59 7b74f98 d6eab59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import HfApi
import re
from typing import List, Dict
import subprocess
import os
import black
from pylint import lint
from io import StringIO
import sys
class TextGenerationTool:
def __init__(self, llm: str):
self.llm = llm
self.tokenizer = AutoTokenizer.from_pretrained(llm)
self.model = AutoModelForCausalLM.from_pretrained(llm)
def generate_text(self, prompt: str, max_length: int = 50) -> str:
inputs = self.tokenizer(prompt, return_tensors="pt")
outputs = self.model.generate(**inputs, max_length=max_length)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
class AIAgent:
def __init__(self, name: str, description: str, skills: List[str], llm: str):
self.name = name
self.description = description
self.skills = skills
self.text_gen_tool = TextGenerationTool(llm)
self._hf_api = HfApi() # Initialize HfApi here
def generate_agent_response(self, prompt: str) -> str:
return self.text_gen_tool.generate_text(prompt)
def create_agent_prompt(self) -> str:
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
return agent_prompt
def autonomous_build(self, chat_history: List[tuple[str, str]], workspace_projects: Dict[str, Dict],
project_name: str, selected_model: str, hf_token: str) -> tuple[str, str]:
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
next_step = "Based on the current state, the next logical step is to implement the main application logic."
return summary, next_step
def deploy_built_space_to_hf(self, project_name: str) -> str:
space_content = generate_space_content(project_name)
repository = self._hf_api.create_repo(
repo_id=project_name,
private=True,
token=hf_token,
exist_ok=True,
space_sdk="streamlit"
)
self._hf_api.upload_file(
path_or_fileobj=space_content,
path_in_repo="app.py",
repo_id=project_name,
repo_type="space",
token=hf_token
)
return repository.name
def has_valid_hf_token(self) -> bool:
return self._hf_api.whoami(token=hf_token) is not None
def process_input(input_text: str) -> str:
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium", tokenizer="microsoft/DialoGPT-medium", clean_up_tokenization_spaces=True)
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
return response
def run_code(code: str) -> str:
try:
result = subprocess.run(code, shell=True, capture_output=True, text=True)
return result.stdout
except Exception as e:
return str(e)
def workspace_interface(project_name: str) -> str:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {'files': []}
return f"Project '{project_name}' created successfully."
else:
return f"Project '{project_name}' already exists."
def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project '{project_name}' does not exist."
file_path = os.path.join(project_path, file_name)
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]['files'].append(file_name)
return f"Code added to '{file_name}' in project '{project_name}'."
def display_chat_history(chat_history: List[tuple[str, str]]) -> str:
return "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
def display_workspace_projects(workspace_projects: Dict[str, Dict]) -> str:
return "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
def generate_space_content(project_name: str) -> str:
# Logic to generate the Streamlit app content based on project_name
# ... (This is where you'll need to implement the actual code generation)
return "import streamlit as st\nst.title('My Streamlit App')\nst.write('Hello, world!')"
def analyze_code(code: str) -> List[str]:
hints = []
# Example pointer: Suggest using list comprehensions
if re.search(r'for .* in .*:\n\s+.*\.append\(', code):
hints.append("Consider using a list comprehension instead of a loop for appending to a list.")
# Example pointer: Recommend using f-strings for string formatting
if re.search(r'\".*\%s\"|\'.*\%s\'', code) or re.search(r'\".*\%d\"|\'.*\%d\'', code):
hints.append("Consider using f-strings for cleaner and more efficient string formatting.")
# Example pointer: Avoid using global variables
if re.search(r'\bglobal\b', code):
hints.append("Avoid using global variables. Consider passing parameters or using classes.")
# Example pointer: Recommend using `with` statement for file operations
if re.search(r'open\(.+\)', code) and not re.search(r'with open\(.+\)', code):
hints.append("Consider using the `with` statement when opening files to ensure proper resource management.")
return hints
def get_code_completion(prompt: str) -> str:
# Generate code completion based on the current code input
# Use max_new_tokens instead of max_length
completions = code_generator(prompt, max_new_tokens=50, num_return_sequences=1)
return completions[0]['generated_text']
def lint_code(code: str) -> List[str]:
# Capture pylint output
pylint_output = StringIO()
sys.stdout = pylint_output
# Run pylint on the provided code
lint.Run(['--from-stdin'], do_exit=False, input=code)
# Reset stdout
sys.stdout = sys.__stdout__
# Extract pylint messages
messages = pylint_output.getvalue().splitlines()
return messages
def format_code(code: str) -> str:
# Format code using Black
formatted_code = black.format_str(code, mode=black.FileMode())
return formatted_code |