File size: 12,736 Bytes
20e0ec5
 
83c7399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdc6c2
83c7399
 
 
 
 
 
 
 
 
 
 
 
20e0ec5
83c7399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da033db
83c7399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import subprocess
import logging
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
import torch
from datetime import datetime
from huggingface_hub import hf_hub_url, cached_download, HfApi
from dotenv import load_dotenv

# Constants
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
AVAILABLE_CODE_GENERATIVE_MODELS = [
    "bigcode/starcoder",  # Popular and powerful
    "Salesforce/codegen-350M-mono",  # Smaller, good for quick tasks
    "microsoft/CodeGPT-small",  # Smaller, good for quick tasks
    "google/flan-t5-xl",  # Powerful, good for complex tasks
    "facebook/bart-large-cnn",  # Good for text-to-code tasks
]

# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HUGGING_FACE_API_KEY")

# Initialize logger
logging.basicConfig(level=logging.INFO)

# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
    st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
    st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
    st.session_state.available_agents = []
if 'current_state' not in st.session_state:
    st.session_state.current_state = {
        'toolbox': {},
        'workspace_chat': {}
    }

# Load pre-trained RAG retriever
rag_retriever = RagRetriever.from_pretrained("facebook/rag-token-base")  # Use a Hugging Face RAG model

# Load pre-trained chat model
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium")  # Use a Hugging Face chat model

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")

def process_input(user_input):
    # Input pipeline: Tokenize and preprocess user input
    input_ids = tokenizer(user_input, return_tensors="pt").input_ids
    attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask

    # RAG model: Generate response
    output = rag_retriever(input_ids, attention_mask=attention_mask)
    response = output.generator_outputs[0].sequences[0]

    # Chat model: Refine response
    chat_input = tokenizer(response, return_tensors="pt")
    chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
    chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
    output = chat_model(**chat_input)
    refined_response = output.sequences[0]

    # Output pipeline: Return final response
    return refined_response

def workspace_interface(project_name):
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if os.path.exists(project_path):
        return f"Project '{project_name}' already exists."
    else:
        os.makedirs(project_path)
        st.session_state.workspace_projects[project_name] = {'files': []}
        return f"Project '{project_name}' created successfully."

def add_code_to_workspace(project_name, code, file_name):
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if not os.path.exists(project_path):
        return f"Project '{project_name}' does not exist."

    file_path = os.path.join(project_path, file_name)
    try:
        with open(file_path, "w") as file:
            file.write(code)
        st.session_state.workspace_projects[project_name]['files'].append(file_name)
        return f"Code added to '{file_name}' in project '{project_name}'."
    except Exception as e:
        logging.error(f"Error adding code: {file_name}: {e}")
        return f"Error adding code: {file_name}"

def run_code(command, project_name=None):
    if project_name:
        project_path = os.path.join(PROJECT_ROOT, project_name)
        result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_path)
    else:
        result = subprocess.run(command, shell=True, capture_output=True, text=True)
    return result.stdout

def display_chat_history(history):
    chat_history = ""
    for user_input, response in history:
        chat_history += f"User: {user_input}\nAgent: {response}\n\n"
    return chat_history

def display_workspace_projects(projects):
    workspace_projects = ""
    for project, details in projects.items():
        workspace_projects += f"Project: {project}\nFiles:\n"
        for file in details['files']:
            workspace_projects += f"  - {file}\n"
    return workspace_projects

def download_models():
    for model in AVAILABLE_CODE_GENERATIVE_MODELS:
        try:
            cached_model = cached_download(model)
            logging.info(f"Downloaded model '{model}' successfully.")
        except Exception as e:
            logging.error(f"Error downloading model '{model}': {e}")

def deploy_space_to_hf(project_name, hf_token):
    repository_name = f"my-awesome-space_{datetime.now().timestamp()}"
    files = get_built_space_files()
    commit_response = deploy_to_git(project_name, repository_name, files)
    if commit_response:
        publish_space(repository_name, hf_token)
        return f"Space '{repository_name}' deployed successfully."
    else:
        return "Failed to commit changes to Space."

def get_built_space_files():
    projects = st.session_state.workspace_projects
    files = []
    for project in projects.values():
        for file in project['files']:
            file_path = os.path.join(PROJECT_ROOT, project['project_name'], file)
            with open(file_path, "rb") as file:
                files.append(file.read())
    return files

def deploy_to_git(project_name, repository_name, files):
    project_path = os.path.join(PROJECT_ROOT, project_name)
    git_repo_url = hf_hub_url(repository_name)
    git = subprocess.Popen(["git", "init"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
    git.communicate()

    git = subprocess.Popen(["git", "add", "-A"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
    git.communicate()

    for file in files:
        filename = "temp.txt"
        with open("temp.txt", "wb") as temp_file:
            temp_file.write(file)
            git = subprocess.Popen(["git", "add", filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
            git.communicate()
            os.remove("temp.txt")

    git = subprocess.Popen(["git", "commit", "-m", "Initial commit"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
    git.communicate()

    return git.returncode == 0

def publish_space(repository_name, hf_token):
    api = HfApi(token=hf_token)
    api.create_model(repository_name, files=[], push_to_hub=True)

def handle_autonomous_build():
    if not st.session_state.workspace_projects or not st.session_state.available_agents:
        st.error("No projects or agents available to build.")
        return

    project_name = st.session_state.workspace_projects.keys()[0]
    selected_agent = st.session_state.available_agents[0]
    code_idea = st.session_state.current_state["workspace_chat"]["user_input"]
    code_generative_model = next((model for model in AVAILABLE_CODE_GENERATIVE_MODELS if model in st.session_state.current_state["toolbox"]["selected_models"]), None)

    if not code_generative_model:
        st.error("No code-generative model selected.")
        return

    logging.info(f"Building project '{project_name}' with agent '{selected_agent}' and model '{code_generative_model}'.")

    try:
        # TODO: Add code to run the build process here
        # This could include generating code, running it, and updating the workspace projects
        # The build process should also update the UI with the build summary and next steps
        summary, next_step = build_project(project_name, selected_agent, code_idea, code_generative_model)
        st.write(f"Build summary: {summary}")
        st.write(f"Next step: {next_step}")

        if next_step == "Deploy to Hugging Face Hub":
            deploy_response = deploy_space_to_hf(project_name, HF_TOKEN)
            st.write(deploy_response)
    except Exception as e:
        logging.error(f"Error during build process: {e}")
        st.error("Error during build process.")

def build_project(project_name, agent, code_idea, code_generative_model):
    # TODO: Add code to build the project here
    # This could include generating code, running it, and updating the workspace projects
    # The build process should also return a summary and next step
    summary = "Project built successfully."
    next_step = ""
    return summary, next_step

def main():
    # Initialize the app
    st.title("AI Agent Creator")

    # Sidebar navigation
    st.sidebar.title("Navigation")
    app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])

    if app_mode == "AI Agent Creator":
        # AI Agent Creator
        st.header("Create an AI Agent from Text")

        st.subheader("From Text")
        agent_name = st.text_input("Enter agent name:")
        text_input = st.text_area("Enter skills (one per line):")
        if st.button("Create Agent"):
            skills = text_input.split('\n')
            try:
                agent = AIAgent(agent_name, "AI agent created from text input", skills)
                st.session_state.available_agents.append(agent_name)
                st.success(f"Agent '{agent_name}' created and saved successfully.")
            except Exception as e:
                st.error(f"Error creating agent: {e}")

    elif app_mode == "Tool Box":
        # Tool Box
        st.header("AI-Powered Tools")

        # Chat Interface
        st.subheader("Chat with CodeCraft")
        chat_input = st.text_area("Enter your message:")
        if st.button("Send"):
            response = process_input(chat_input)
            st.session_state.chat_history.append((chat_input, response))
            st.write(f"CodeCraft: {response}")

        # Terminal Interface
        st.subheader("Terminal")
        terminal_input = st.text_input("Enter a command:")
        if st.button("Run"):
            output = run_code(terminal_input)
            st.session_state.terminal_history.append((terminal_input, output))
            st.code(output, language="bash")

        # Project Management
        st.subheader("Project Management")
        project_name_input = st.text_input("Enter Project Name:")
        if st.button("Create Project"):
            status = workspace_interface(project_name_input)
            st.write(status)

        code_to_add = st.text_area("Enter Code to Add to Workspace:", height=150)
        file_name_input = st.text_input("Enter File Name (e.g., 'app.py'):")
        if st.button("Add Code"):
            status = add_code_to_workspace(project_name_input, code_to_add, file_name_input)
            st.write(status)

        # Display Chat History
        st.subheader("Chat History")
        chat_history = display_chat_history(st.session_state.chat_history)
        st.text_area("Chat History", value=chat_history, height=200)

        # Display Workspace Projects
        st.subheader("Workspace Projects")
        workspace_projects = display_workspace_projects(st.session_state.workspace_projects)
        st.text_area("Workspace Projects", value=workspace_projects, height=200)

        # Download and deploy models
        if st.button("Download and Deploy Models"):
            download_models()
            st.info("Models downloaded and deployed.")

    elif app_mode == "Workspace Chat App":
        # Workspace Chat App
        st.header("Workspace Chat App")

        # Chat Interface with AI Agents
        st.subheader("Chat with AI Agents")
        selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
        agent_chat_input = st.text_area("Enter your message for the agent:")
        if st.button("Send to Agent"):
            response = process_input(agent_chat_input)
            st.session_state.chat_history.append((agent_chat_input, response))
            st.write(f"{selected_agent}: {response}")

        # Code Generation
        st.subheader("Code Generation")
        code_idea = st.text_input("Enter your code idea:")
        selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
        if st.button("Generate Code"):
            generated_code = run_code(code_idea)
            st.code(generated_code, language="python")

        # Autonomous build process
        if st.button("Automate Build Process"):
            handle_autonomous_build()

if __name__ == "__main__":
    main()