Spaces:
Sleeping
Sleeping
File size: 12,736 Bytes
20e0ec5 83c7399 2cdc6c2 83c7399 20e0ec5 83c7399 da033db 83c7399 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os
import subprocess
import logging
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
import torch
from datetime import datetime
from huggingface_hub import hf_hub_url, cached_download, HfApi
from dotenv import load_dotenv
# Constants
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
AVAILABLE_CODE_GENERATIVE_MODELS = [
"bigcode/starcoder", # Popular and powerful
"Salesforce/codegen-350M-mono", # Smaller, good for quick tasks
"microsoft/CodeGPT-small", # Smaller, good for quick tasks
"google/flan-t5-xl", # Powerful, good for complex tasks
"facebook/bart-large-cnn", # Good for text-to-code tasks
]
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HUGGING_FACE_API_KEY")
# Initialize logger
logging.basicConfig(level=logging.INFO)
# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
if 'current_state' not in st.session_state:
st.session_state.current_state = {
'toolbox': {},
'workspace_chat': {}
}
# Load pre-trained RAG retriever
rag_retriever = RagRetriever.from_pretrained("facebook/rag-token-base") # Use a Hugging Face RAG model
# Load pre-trained chat model
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Use a Hugging Face chat model
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
def process_input(user_input):
# Input pipeline: Tokenize and preprocess user input
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
# RAG model: Generate response
output = rag_retriever(input_ids, attention_mask=attention_mask)
response = output.generator_outputs[0].sequences[0]
# Chat model: Refine response
chat_input = tokenizer(response, return_tensors="pt")
chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
output = chat_model(**chat_input)
refined_response = output.sequences[0]
# Output pipeline: Return final response
return refined_response
def workspace_interface(project_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if os.path.exists(project_path):
return f"Project '{project_name}' already exists."
else:
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {'files': []}
return f"Project '{project_name}' created successfully."
def add_code_to_workspace(project_name, code, file_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project '{project_name}' does not exist."
file_path = os.path.join(project_path, file_name)
try:
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]['files'].append(file_name)
return f"Code added to '{file_name}' in project '{project_name}'."
except Exception as e:
logging.error(f"Error adding code: {file_name}: {e}")
return f"Error adding code: {file_name}"
def run_code(command, project_name=None):
if project_name:
project_path = os.path.join(PROJECT_ROOT, project_name)
result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_path)
else:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
return result.stdout
def display_chat_history(history):
chat_history = ""
for user_input, response in history:
chat_history += f"User: {user_input}\nAgent: {response}\n\n"
return chat_history
def display_workspace_projects(projects):
workspace_projects = ""
for project, details in projects.items():
workspace_projects += f"Project: {project}\nFiles:\n"
for file in details['files']:
workspace_projects += f" - {file}\n"
return workspace_projects
def download_models():
for model in AVAILABLE_CODE_GENERATIVE_MODELS:
try:
cached_model = cached_download(model)
logging.info(f"Downloaded model '{model}' successfully.")
except Exception as e:
logging.error(f"Error downloading model '{model}': {e}")
def deploy_space_to_hf(project_name, hf_token):
repository_name = f"my-awesome-space_{datetime.now().timestamp()}"
files = get_built_space_files()
commit_response = deploy_to_git(project_name, repository_name, files)
if commit_response:
publish_space(repository_name, hf_token)
return f"Space '{repository_name}' deployed successfully."
else:
return "Failed to commit changes to Space."
def get_built_space_files():
projects = st.session_state.workspace_projects
files = []
for project in projects.values():
for file in project['files']:
file_path = os.path.join(PROJECT_ROOT, project['project_name'], file)
with open(file_path, "rb") as file:
files.append(file.read())
return files
def deploy_to_git(project_name, repository_name, files):
project_path = os.path.join(PROJECT_ROOT, project_name)
git_repo_url = hf_hub_url(repository_name)
git = subprocess.Popen(["git", "init"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
git.communicate()
git = subprocess.Popen(["git", "add", "-A"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
git.communicate()
for file in files:
filename = "temp.txt"
with open("temp.txt", "wb") as temp_file:
temp_file.write(file)
git = subprocess.Popen(["git", "add", filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
git.communicate()
os.remove("temp.txt")
git = subprocess.Popen(["git", "commit", "-m", "Initial commit"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_path)
git.communicate()
return git.returncode == 0
def publish_space(repository_name, hf_token):
api = HfApi(token=hf_token)
api.create_model(repository_name, files=[], push_to_hub=True)
def handle_autonomous_build():
if not st.session_state.workspace_projects or not st.session_state.available_agents:
st.error("No projects or agents available to build.")
return
project_name = st.session_state.workspace_projects.keys()[0]
selected_agent = st.session_state.available_agents[0]
code_idea = st.session_state.current_state["workspace_chat"]["user_input"]
code_generative_model = next((model for model in AVAILABLE_CODE_GENERATIVE_MODELS if model in st.session_state.current_state["toolbox"]["selected_models"]), None)
if not code_generative_model:
st.error("No code-generative model selected.")
return
logging.info(f"Building project '{project_name}' with agent '{selected_agent}' and model '{code_generative_model}'.")
try:
# TODO: Add code to run the build process here
# This could include generating code, running it, and updating the workspace projects
# The build process should also update the UI with the build summary and next steps
summary, next_step = build_project(project_name, selected_agent, code_idea, code_generative_model)
st.write(f"Build summary: {summary}")
st.write(f"Next step: {next_step}")
if next_step == "Deploy to Hugging Face Hub":
deploy_response = deploy_space_to_hf(project_name, HF_TOKEN)
st.write(deploy_response)
except Exception as e:
logging.error(f"Error during build process: {e}")
st.error("Error during build process.")
def build_project(project_name, agent, code_idea, code_generative_model):
# TODO: Add code to build the project here
# This could include generating code, running it, and updating the workspace projects
# The build process should also return a summary and next step
summary = "Project built successfully."
next_step = ""
return summary, next_step
def main():
# Initialize the app
st.title("AI Agent Creator")
# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
if app_mode == "AI Agent Creator":
# AI Agent Creator
st.header("Create an AI Agent from Text")
st.subheader("From Text")
agent_name = st.text_input("Enter agent name:")
text_input = st.text_area("Enter skills (one per line):")
if st.button("Create Agent"):
skills = text_input.split('\n')
try:
agent = AIAgent(agent_name, "AI agent created from text input", skills)
st.session_state.available_agents.append(agent_name)
st.success(f"Agent '{agent_name}' created and saved successfully.")
except Exception as e:
st.error(f"Error creating agent: {e}")
elif app_mode == "Tool Box":
# Tool Box
st.header("AI-Powered Tools")
# Chat Interface
st.subheader("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
response = process_input(chat_input)
st.session_state.chat_history.append((chat_input, response))
st.write(f"CodeCraft: {response}")
# Terminal Interface
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
output = run_code(terminal_input)
st.session_state.terminal_history.append((terminal_input, output))
st.code(output, language="bash")
# Project Management
st.subheader("Project Management")
project_name_input = st.text_input("Enter Project Name:")
if st.button("Create Project"):
status = workspace_interface(project_name_input)
st.write(status)
code_to_add = st.text_area("Enter Code to Add to Workspace:", height=150)
file_name_input = st.text_input("Enter File Name (e.g., 'app.py'):")
if st.button("Add Code"):
status = add_code_to_workspace(project_name_input, code_to_add, file_name_input)
st.write(status)
# Display Chat History
st.subheader("Chat History")
chat_history = display_chat_history(st.session_state.chat_history)
st.text_area("Chat History", value=chat_history, height=200)
# Display Workspace Projects
st.subheader("Workspace Projects")
workspace_projects = display_workspace_projects(st.session_state.workspace_projects)
st.text_area("Workspace Projects", value=workspace_projects, height=200)
# Download and deploy models
if st.button("Download and Deploy Models"):
download_models()
st.info("Models downloaded and deployed.")
elif app_mode == "Workspace Chat App":
# Workspace Chat App
st.header("Workspace Chat App")
# Chat Interface with AI Agents
st.subheader("Chat with AI Agents")
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
agent_chat_input = st.text_area("Enter your message for the agent:")
if st.button("Send to Agent"):
response = process_input(agent_chat_input)
st.session_state.chat_history.append((agent_chat_input, response))
st.write(f"{selected_agent}: {response}")
# Code Generation
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
if st.button("Generate Code"):
generated_code = run_code(code_idea)
st.code(generated_code, language="python")
# Autonomous build process
if st.button("Automate Build Process"):
handle_autonomous_build()
if __name__ == "__main__":
main() |