File size: 17,514 Bytes
ecbc10f
5bf1ad4
 
ecbc10f
20e0ec5
 
ecbc10f
 
 
 
83c7399
 
ecbc10f
 
 
 
 
 
 
83c7399
05d85a0
83c7399
 
ecbc10f
83c7399
 
 
 
 
 
 
 
 
 
 
ecbc10f
 
83c7399
6215e09
ecbc10f
6215e09
 
 
ecbc10f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6215e09
ecbc10f
83c7399
ecbc10f
83c7399
 
 
ecbc10f
 
83c7399
ecbc10f
83c7399
 
 
ecbc10f
83c7399
ecbc10f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c7399
873d578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecbc10f
83c7399
ecbc10f
83c7399
ecbc10f
 
 
 
 
 
 
83c7399
 
 
 
 
ecbc10f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import streamlit as st
from streamlit_ace import st_ace
from streamlit_jupyter import st_jupyter
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import os
import subprocess
import black
from pylint import lint
from io import StringIO
import sys
import torch
from huggingface_hub import hf_hub_url, cached_download, HfApi
import re
from typing import List, Dict

# Access Hugging Face API key from secrets
hf_token = st.secrets["hf_token"]
if not hf_token:
    st.error("Hugging Face API key not found. Please make sure it is set in the secrets.")

HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/0shotTest"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
AVAILABLE_CODE_GENERATIVE_MODELS = ["bigcode/starcoder", "Salesforce/codegen-350M-mono", "microsoft/CodeGPT-small"]

# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
    st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
    st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
    st.session_state.available_agents = []

# AI Guide Toggle
ai_guide_level = st.sidebar.radio("AI Guide Level", ["Full Assistance", "Partial Assistance", "No Assistance"])

class AIAgent:
    def __init__(self, name: str, description: str, skills: List[str]):
        self.name = name
        self.description = description
        self.skills = skills
        self._hf_api = HfApi()  # Initialize HfApi here

    def create_agent_prompt(self) -> str:
        skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
        agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
        return agent_prompt

    def autonomous_build(self, chat_history: List[tuple[str, str]], workspace_projects: Dict[str, Dict], 
                        project_name: str, selected_model: str, hf_token: str) -> tuple[str, str]:
        summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
        summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
        next_step = "Based on the current state, the next logical step is to implement the main application logic."
        return summary, next_step

    def deploy_built_space_to_hf(self, project_name: str) -> str:
        # Assuming you have a function that generates the space content
        space_content = generate_space_content(project_name)
        repository = self._hf_api.create_repo(
            repo_id=project_name, 
            private=True,
            token=hf_token,
            exist_ok=True,
            space_sdk="streamlit"
        )
        self._hf_api.upload_file(
            path_or_fileobj=space_content,
            path_in_repo="app.py",
            repo_id=project_name,
            repo_type="space",
            token=hf_token
        )
        return repository.name

    def has_valid_hf_token(self) -> bool:
        return self._hf_api.whoami(token=hf_token) is not None

def process_input(input_text: str) -> str:
    chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium", tokenizer="microsoft/DialoGPT-medium", clean_up_tokenization_spaces=True)
    response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
    return response

def run_code(code: str) -> str:
    try:
        result = subprocess.run(code, shell=True, capture_output=True, text=True)
        return result.stdout
    except Exception as e:
        return str(e)

def workspace_interface(project_name: str) -> str:
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if not os.path.exists(project_path):
        os.makedirs(project_path)
        st.session_state.workspace_projects[project_name] = {'files': []}
        return f"Project '{project_name}' created successfully."
    else:
        return f"Project '{project_name}' already exists."

def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
    project_path = os.path.join(PROJECT_ROOT, project_name)
    if not os.path.exists(project_path):
        return f"Project '{project_name}' does not exist."
    
    file_path = os.path.join(project_path, file_name)
    with open(file_path, "w") as file:
        file.write(code)
    st.session_state.workspace_projects[project_name]['files'].append(file_name)
    return f"Code added to '{file_name}' in project '{project_name}'."

def display_chat_history(chat_history: List[tuple[str, str]]) -> str:
    return "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])

def display_workspace_projects(workspace_projects: Dict[str, Dict]) -> str:
    return "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])

def generate_space_content(project_name: str) -> str:
    # Logic to generate the Streamlit app content based on project_name
    # ... (This is where you'll need to implement the actual code generation)
    return "import streamlit as st\nst.title('My Streamlit App')\nst.write('Hello, world!')"

# Function to display the AI Guide chat
def display_ai_guide_chat(chat_history: List[tuple[str, str]]):
    st.markdown("<div class='chat-history'>", unsafe_allow_html=True)
    for user_message, agent_message in chat_history:
        st.markdown(f"<div class='chat-message user'>{user_message}</div>", unsafe_allow_html=True)
        st.markdown(f"<div class='chat-message agent'>{agent_message}</div>", unsafe_allow_html=True)
    st.markdown("</div>", unsafe_allow_html=True)

# Load the CodeGPT tokenizer explicitly
code_generator_tokenizer = AutoTokenizer.from_pretrained("microsoft/CodeGPT-small-py", clean_up_tokenization_spaces=True)
# Load the CodeGPT model for code completion
code_generator = pipeline("text-generation", model="microsoft/CodeGPT-small-py", tokenizer=code_generator_tokenizer)

def analyze_code(code: str) -> List[str]:
    hints = []
    
    # Example pointer: Suggest using list comprehensions
    if re.search(r'for .* in .*:\n\s+.*\.append\(', code):
        hints.append("Consider using a list comprehension instead of a loop for appending to a list.")
    
    # Example pointer: Recommend using f-strings for string formatting
    if re.search(r'\".*\%s\"|\'.*\%s\'', code) or re.search(r'\".*\%d\"|\'.*\%d\'', code):
        hints.append("Consider using f-strings for cleaner and more efficient string formatting.")
    
    # Example pointer: Avoid using global variables
    if re.search(r'\bglobal\b', code):
        hints.append("Avoid using global variables. Consider passing parameters or using classes.")
    
    # Example pointer: Recommend using `with` statement for file operations
    if re.search(r'open\(.+\)', code) and not re.search(r'with open\(.+\)', code):
        hints.append("Consider using the `with` statement when opening files to ensure proper resource management.")
    
    return hints

def get_code_completion(prompt: str) -> str:
    # Generate code completion based on the current code input
    # Use max_new_tokens instead of max_length
    completions = code_generator(prompt, max_new_tokens=50, num_return_sequences=1) 
    return completions[0]['generated_text']

def lint_code(code: str) -> List[str]:
    # Capture pylint output
    pylint_output = StringIO()
    sys.stdout = pylint_output
    
    # Run pylint on the provided code
    pylint.lint.Run(['--from-stdin'], do_exit=False, argv=[], stdin=StringIO(code))
    
    # Reset stdout and fetch lint results
    sys.stdout = sys.__stdout__
    lint_results = pylint_output.getvalue().splitlines()
    return lint_results

# Set page configuration
st.set_page_config(layout="wide", page_title="RoboCoders")

# Sidebar for chat interface
st.sidebar.title("Chat Interface")
user_input = st.sidebar.text_area("Type your idea, task, or request here:")

# Placeholder function to simulate code generation
def generate_code(user_input):
    return f"# Generated code for: {user_input}\nprint('Hello, World!')"

# Main layout
col1, col2 = st.columns([1, 3])

with col1:
    st.title("Code Editor")
    if user_input:
        code = generate_code(user_input)
    else:
        code = ""
    code = st_ace(value=code, language='python', theme='monokai', height=400)

with col2:
    st.title("Jupyter IPython Console")
    st_jupyter()
    st.title("Read-Only Terminal")
    st.text_area("Terminal Output", height=200)

# Placeholder for autonomous agent logic
if user_input:
    st.sidebar.write("Processing your request...")

    # Example: Generate a simple "Hello, World!" Streamlit app
    generated_code = code_generator(f"Create a Streamlit app that displays 'Hello, World!'", max_new_tokens=50, num_return_sequences=1)[0]['generated_text']
    st.sidebar.write("Generated code:")
    st.sidebar.code(generated_code, language="python")

    # Update the code editor
    code = generated_code
    # ... (Additional logic for code analysis, project management, etc.)

    # ... (Update the Jupyter console and terminal output as needed)

    # ... (Interact with the AI guide chatbot)

if __name__ == "__main__":
    st.sidebar.title("Navigation")
    app_mode = st.sidebar.selectbox("Choose the app mode", ["Home", "Terminal", "Explorer", "Code Editor", "Build & Deploy"])

    if app_mode == "Home":
        st.title("Welcome to AI-Guided Development")
        st.write("This application helps you build and deploy applications with the assistance of an AI Guide.")
        st.write("Toggle the AI Guide from the sidebar to choose the level of assistance you need.")

    elif app_mode == "Terminal":
        st.header("Terminal")
        terminal_input = st.text_input("Enter a command:")
        if st.button("Run"):
            output = run_code(terminal_input)
            st.session_state.terminal_history.append((terminal_input, output))
            st.code(output, language="bash")
        if ai_guide_level != "No Assistance":
            st.write("Run commands here to add packages to your project. For example: pip install <package-name>.")
            if terminal_input and "install" in terminal_input:
                package_name = terminal_input.split("install")[-1].strip()
                st.write(f"Package {package_name} will be added to your project.")

    elif app_mode == "Explorer":
        st.header("Explorer")
        uploaded_file = st.file_uploader("Upload a file", type=["py"])
        if uploaded_file:
            file_details = {"FileName": uploaded_file.name, "FileType": uploaded_file.type}
            st.write(file_details)
            save_path = os.path.join(PROJECT_ROOT, uploaded_file.name)
            with open(save_path, "wb") as f:
                f.write(uploaded_file.getbuffer())
            st.success(f"File {uploaded_file.name} saved successfully!")

        st.write("Drag and drop files into the 'app' folder.")
        for project, details in st.session_state.workspace_projects.items():
            st.write(f"Project: {project}")
            for file in details['files']:
                st.write(f"  - {file}")
                if st.button(f"Move {file} to app folder"):
                    # Logic to move file to 'app' folder
                    pass
        if ai_guide_level != "No Assistance":
            st.write("You can upload files and move them into the 'app' folder for building your application.")

    elif app_mode == "Code Editor":
        st.header("Code Editor")
        code_editor = st.text_area("Write your code:", height=300)
        if st.button("Save Code"):
            # Logic to save code
            pass
        if ai_guide_level != "No Assistance":
            st.write("The function foo() requires the bar package. Add it to requirements.txt.")

        # Analyze code and provide real-time hints
        hints = analyze_code(code_editor)
        if hints:
            st.write("**Helpful Hints:**")
            for hint in hints:
                st.write(f"- {hint}")

        if st.button("Get Code Suggestion"):
            # Provide a predictive code completion
            completion = get_code_completion(code_editor)
            st.write("**Suggested Code Completion:**")
            st.code(completion, language="python")

        if st.button("Check Code"):
            # Analyze the code for errors and warnings
            lint_results = lint_code(code_editor)

            if lint_results:
                st.write("**Errors and Warnings:**")
                for result in lint_results:
                    st.write(result)
            else:
                st.write("No issues found! Your code is clean.")

    elif app_mode == "Build & Deploy":
        st.header("Build & Deploy")
        project_name_input = st.text_input("Enter Project Name for Automation:")
        if st.button("Automate"):
            selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
            selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
            agent = AIAgent(selected_agent, "", [])  # Load the agent without skills for now
            summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name_input, selected_model, hf_token)
            st.write("Autonomous Build Summary:")
            st.write(summary)
            st.write("Next Step:")
            st.write(next_step)
            if agent._hf_api and agent.has_valid_hf_token():
                repository_name = agent.deploy_built_space_to_hf(project_name_input)
                st.markdown("## Congratulations! Successfully deployed Space 🚀 ##")
                st.markdown(f"[Check out your new Space here](hf.co/{repository_name})")

    # AI Guide Chat
    if ai_guide_level != "No Assistance":
        display_ai_guide_chat(st.session_state.chat_history)
        # Add a text input for user to interact with the AI Guide
        user_input = st.text_input("Ask the AI Guide a question:", key="user_input")
        if st.button("Send"):
            if user_input:
                # Process the user's input and get a response from the AI Guide
                agent_response = process_input(user_input)
                st.session_state.chat_history.append((user_input, agent_response))
                # Clear the user input field
                st.session_state.user_input = ""

    # CSS for styling
    st.markdown("""
    <style>
    /* Advanced and Accommodating CSS */
    body {
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        background-color: #f4f4f9;
        color: #333;
        margin: 0;
        padding: 0;
    }
    h1, h2, h3, h4, h5, h6 {
        color: #333;
    }
    .container {
        width: 90%;
        margin: 0 auto;
        padding: 20px;
    }
    /* Navigation Sidebar */
    .sidebar {
        background-color: #2c3e50;
        color: #ecf0f1;
        padding: 20px;
        height: 100vh;
        position: fixed;
        top: 0;
        left: 0;
        width: 250px;
        overflow-y: auto;
    }
    .sidebar a {
        color: #ecf0f1;
        text-decoration: none;
        display: block;
        padding: 10px 0;
    }
    .sidebar a:hover {
        background-color: #34495e;
        border-radius: 5px;
    }
    /* Main Content */
    .main-content {
        margin-left: 270px;
        padding: 20px;
    }
    /* Buttons */
    button {
        background-color: #3498db;
        color: #fff;
        border: none;
        padding: 10px 20px;
        border-radius: 5px;
        cursor: pointer;
        font-size: 16px;
    }
    button:hover {
        background-color: #2980b9;
    }
    /* Text Areas and Inputs */
    textarea, input[type="text"] {
        width: 100%;
        padding: 10px;
        margin: 10px 0;
        border: 1px solid #ddd;
        border-radius: 5px;
        box-sizing: border-box;
    }
    textarea:focus, input[type="text"]:focus {
        border-color: #3498db;
        outline: none;
    }
    /* Terminal Output */
    .code-output {
        background-color: #1e1e1e;
        color: #dcdcdc;
        padding: 20px;
        border-radius: 5px;
        font-family: 'Courier New', Courier, monospace;
    }
    /* Chat History */
    .chat-history {
        background-color: #ecf0f1;
        padding: 20px;
        border-radius: 5px;
        max-height: 300px;
        overflow-y: auto;
    }
    .chat-message {
        margin-bottom: 10px;
    }
    .chat-message.user {
        text-align: right;
        color: #3498db;
    }
    .chat-message.agent {
        text-align: left;
        color: #e74c3c;
    }
    /* Project Management */
    .project-list {
        background-color: #ecf0f1;
        padding: 20px;
        border-radius: 5px;
        max-height: 300px;
        overflow-y: auto;
    }
    .project-item {
        margin-bottom: 10px;
    }
    .project-item a {
        color: #3498db;
        text-decoration: none;
    }
    .project-item a:hover {
        text-decoration: underline;
    }
    </style>
    """, unsafe_allow_html=True)