Spaces:
Running
Running
File size: 15,535 Bytes
78e9275 5bf1ad4 78e9275 20e0ec5 ecbc10f 83c7399 ecbc10f 6f4d783 4c266dd 6f4d783 ecbc10f 83c7399 05d85a0 83c7399 ecbc10f 83c7399 ecbc10f 83c7399 78e9275 6215e09 78e9275 6215e09 78e9275 ecbc10f 78e9275 ecbc10f 6215e09 ecbc10f 83c7399 ecbc10f 83c7399 ecbc10f 83c7399 ecbc10f 83c7399 ecbc10f 83c7399 ecbc10f 78e9275 ecbc10f 78e9275 ecbc10f 78e9275 873d578 ecbc10f 78e9275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import streamlit as st
from streamlit_ace import st_ace
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
import os
import subprocess
import black
from pylint import lint
from io import StringIO
import sys
import torch
from huggingface_hub import hf_hub_url, cached_download, HfApi
import re
from typing import List, Dict
from streamlit_jupyter import StreamlitPatcher, tqdm
# This line should be at the top of your script
StreamlitPatcher().jupyter() # This patches Streamlit to work in Jupyter
# Access Hugging Face API key from secrets
hf_token = st.secrets["hf_token"]
if not hf_token:
st.error("Hugging Face API key not found. Please make sure it is set in the secrets.")
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/0shotTest"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
AVAILABLE_CODE_GENERATIVE_MODELS = ["bigcode/starcoder", "Salesforce/codegen-350M-mono", "microsoft/CodeGPT-small"]
# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
# AI Guide Toggle
ai_guide_level = st.sidebar.radio("AI Guide Level", ["Full Assistance", "Partial Assistance", "No Assistance"])
class TextGenerationTool:
def __init__(self, llm: str):
self.llm = llm
self.tokenizer = AutoTokenizer.from_pretrained(llm)
self.model = AutoModelForCausalLM.from_pretrained(llm)
def generate_text(self, prompt: str, max_length: int = 50) -> str:
inputs = self.tokenizer(prompt, return_tensors="pt")
outputs = self.model.generate(**inputs, max_length=max_length)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
class AIAgent:
def __init__(self, name: str, description: str, skills: List[str], llm: str):
self.name = name
self.description = description
self.skills = skills
self.text_gen_tool = TextGenerationTool(llm)
self._hf_api = HfApi() # Initialize HfApi here
def generate_agent_response(self, prompt: str) -> str:
return self.text_gen_tool.generate_text(prompt)
def create_agent_prompt(self) -> str:
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
return agent_prompt
def autonomous_build(self, chat_history: List[tuple[str, str]], workspace_projects: Dict[str, Dict],
project_name: str, selected_model: str, hf_token: str) -> tuple[str, str]:
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
next_step = "Based on the current state, the next logical step is to implement the main application logic."
return summary, next_step
def deploy_built_space_to_hf(self, project_name: str) -> str:
space_content = generate_space_content(project_name)
repository = self._hf_api.create_repo(
repo_id=project_name,
private=True,
token=hf_token,
exist_ok=True,
space_sdk="streamlit"
)
self._hf_api.upload_file(
path_or_fileobj=space_content,
path_in_repo="app.py",
repo_id=project_name,
repo_type="space",
token=hf_token
)
return repository.name
def has_valid_hf_token(self) -> bool:
return self._hf_api.whoami(token=hf_token) is not None
def process_input(input_text: str) -> str:
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium", tokenizer="microsoft/DialoGPT-medium", clean_up_tokenization_spaces=True)
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
return response
def run_code(code: str) -> str:
try:
result = subprocess.run(code, shell=True, capture_output=True, text=True)
return result.stdout
except Exception as e:
return str(e)
def workspace_interface(project_name: str) -> str:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {'files': []}
return f"Project '{project_name}' created successfully."
else:
return f"Project '{project_name}' already exists."
def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project '{project_name}' does not exist."
file_path = os.path.join(project_path, file_name)
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]['files'].append(file_name)
return f"Code added to '{file_name}' in project '{project_name}'."
def display_chat_history(chat_history: List[tuple[str, str]]) -> str:
return "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
def display_workspace_projects(workspace_projects: Dict[str, Dict]) -> str:
return "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
def generate_space_content(project_name: str) -> str:
# Logic to generate the Streamlit app content based on project_name
# ... (This is where you'll need to implement the actual code generation)
return "import streamlit as st\nst.title('My Streamlit App')\nst.write('Hello, world!')"
# Function to display the AI Guide chat
def display_ai_guide_chat(chat_history: List[tuple[str, str]]):
st.markdown("<div class='chat-history'>", unsafe_allow_html=True)
for user_message, agent_message in chat_history:
st.markdown(f"<div class='chat-message user'>{user_message}</div>", unsafe_allow_html=True)
st.markdown(f"<div class='chat-message agent'>{agent_message}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Load the CodeGPT tokenizer explicitly
code_generator_tokenizer = AutoTokenizer.from_pretrained("microsoft/CodeGPT-small-py", clean_up_tokenization_spaces=True)
# Load the CodeGPT model for code completion
code_generator = pipeline("text-generation", model="microsoft/CodeGPT-small-py", tokenizer=code_generator_tokenizer)
def analyze_code(code: str) -> List[str]:
hints = []
# Example pointer: Suggest using list comprehensions
if re.search(r'for .* in .*:\n\s+.*\.append\(', code):
hints.append("Consider using a list comprehension instead of a loop for appending to a list.")
# Example pointer: Recommend using f-strings for string formatting
if re.search(r'\".*\%s\"|\'.*\%s\'', code) or re.search(r'\".*\%d\"|\'.*\%d\'', code):
hints.append("Consider using f-strings for cleaner and more efficient string formatting.")
# Example pointer: Avoid using global variables
if re.search(r'\bglobal\b', code):
hints.append("Avoid using global variables. Consider passing parameters or using classes.")
# Example pointer: Recommend using `with` statement for file operations
if re.search(r'open\(.+\)', code) and not re.search(r'with open\(.+\)', code):
hints.append("Consider using the `with` statement when opening files to ensure proper resource management.")
return hints
def get_code_completion(prompt: str) -> str:
# Generate code completion based on the current code input
# Use max_new_tokens instead of max_length
completions = code_generator(prompt, max_new_tokens=50, num_return_sequences=1)
return completions[0]['generated_text']
def lint_code(code: str) -> List[str]:
# Capture pylint output
pylint_output = StringIO()
sys.stdout = pylint_output
# Run pylint on the provided code
pylint.lint.Run(['--from-stdin'], do_exit=False, input=code)
# Reset stdout
sys.stdout = sys.__stdout__
# Extract pylint messages
messages = pylint_output.getvalue().splitlines()
return messages
def format_code(code: str) -> str:
# Format code using Black
formatted_code = black.format_str(code, mode=black.FileMode())
return formatted_code
def main():
st.title("Streamlit Workspace")
# Load agents from the agent directory
agent_files = [f for f in os.listdir(AGENT_DIRECTORY) if f.endswith(".py")]
for agent_file in agent_files:
agent_module = __import__(f"{AGENT_DIRECTORY}.{os.path.splitext(agent_file)[0]}")
agent_class = getattr(agent_module, os.path.splitext(agent_file)[0])
agent_instance = agent_class()
st.session_state.available_agents.append(agent_instance)
# Display the available agents
st.subheader("Available Agents")
for agent in st.session_state.available_agents:
st.write(f"**{agent.name}**: {agent.description}")
# Select an agent
selected_agent = st.selectbox("Select an Agent", [agent.name for agent in st.session_state.available_agents])
current_agent = next((agent for agent in st.session_state.available_agents if agent.name == selected_agent), None)
# Display the agent's prompt
if current_agent:
st.subheader(f"{current_agent.name} Prompt")
st.write(current_agent.create_agent_prompt())
# Workspace Tab
st.subheader("Workspace")
workspace_tabs = st.tabs(["Chat", "Tool Box", "Projects"])
with workspace_tabs[0]:
# Chat Tab
st.subheader("Chat with your Agent")
user_input = st.text_input("Enter your message:")
if user_input:
st.session_state.chat_history.append((user_input, current_agent.generate_agent_response(user_input)))
user_input = "" # Clear the input field
# Display chat history
st.markdown(display_chat_history(st.session_state.chat_history))
# AI Guide
if ai_guide_level != "No Assistance":
st.subheader("AI Guide")
guide_chat_history = []
if ai_guide_level == "Full Assistance":
guide_chat_history.append((
"I'm building a Streamlit app to display data from a CSV file.",
"Great! Let's start by creating a new project in the workspace."
))
guide_chat_history.append((
"Create a new project called 'data_app'.",
"Okay, I've created the project 'data_app'. What would you like to name the main file?"
))
guide_chat_history.append((
"Name it 'app.py'.",
"Alright, I've added an empty 'app.py' file to the 'data_app' project. Now, let's add some code to read the CSV file."
))
guide_chat_history.append((
"Add the following code to 'app.py':\n```python\nimport pandas as pd\nimport streamlit as st\n\ndata = pd.read_csv('data.csv')\nst.write(data)\n```",
"Excellent! Now you can run this code to see the data from your CSV file in the Streamlit app."
))
elif ai_guide_level == "Partial Assistance":
guide_chat_history.append((
"How can I read data from a CSV file in Streamlit?",
"You can use the `pandas` library to read the CSV file and then use `streamlit.write()` to display it."
))
display_ai_guide_chat(guide_chat_history)
with workspace_tabs[1]:
# Tool Box Tab
st.subheader("Tool Box")
tool_tabs = st.tabs(["Code Editor", "Terminal", "Code Analysis"])
with tool_tabs[0]:
# Code Editor Tab
st.subheader("Code Editor")
code_editor = st_ace(
placeholder="Write your code here...",
height=300,
theme="monokai",
key="code_editor",
language="python",
auto_update=True
)
st.button("Run Code", on_click=lambda: st.write(run_code(code_editor)))
# Code Completion
st.subheader("Code Completion")
completion_prompt = st.text_area("Enter code for completion:")
if completion_prompt:
completed_code = get_code_completion(completion_prompt)
st.write(f"**Completion:** {completed_code}")
with tool_tabs[1]:
# Terminal Tab
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if terminal_input:
st.session_state.terminal_history.append(terminal_input)
st.write(run_code(terminal_input))
terminal_input = "" # Clear the input field
# Display terminal history
st.markdown("\n".join(st.session_state.terminal_history))
with tool_tabs[2]:
# Code Analysis Tab
st.subheader("Code Analysis")
code_to_analyze = st.text_area("Enter code to analyze:")
if code_to_analyze:
# Analyze code
analysis_results = analyze_code(code_to_analyze)
if analysis_results:
st.write("**Code Analysis Results:**")
for hint in analysis_results:
st.write(f"- {hint}")
else:
st.write("No code analysis suggestions found.")
# Lint code
lint_results = lint_code(code_to_analyze)
if lint_results:
st.write("**Linting Results:**")
for message in lint_results:
st.write(f"- {message}")
else:
st.write("No linting issues found.")
# Format code
formatted_code = format_code(code_to_analyze)
st.write("**Formatted Code:**")
st.code(formatted_code, language="python")
with workspace_tabs[2]:
# Projects Tab
st.subheader("Projects")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
st.write(workspace_interface(project_name))
# Display existing projects
st.markdown(display_workspace_projects(st.session_state.workspace_projects))
# Add code to a project
selected_project = st.selectbox("Select a project", list(st.session_state.workspace_projects.keys()))
code_to_add = st.text_area("Enter code to add:")
file_name = st.text_input("Enter file name:")
if st.button("Add Code"):
st.write(add_code_to_workspace(selected_project, code_to_add, file_name))
if __name__ == "__main__":
main() |