Spaces:
Build error
Build error
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
from huggingface_hub import HfApi | |
import re | |
from typing import List, Dict | |
import subprocess | |
import os | |
import spaces | |
import black | |
from pylint import lint | |
from io import StringIO | |
import sys | |
class TextGenerationTool: | |
def __init__(self, llm: str): | |
self.llm = llm | |
self.tokenizer = AutoTokenizer.from_pretrained(llm) | |
self.model = AutoModelForCausalLM.from_pretrained(llm) | |
def generate_text(self, prompt: str, max_length: int = 50) -> str: | |
inputs = self.tokenizer(prompt, return_tensors="pt") | |
outputs = self.model.generate(**inputs, max_length=max_length) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
class AIAgent: | |
def __init__(self, name: str, description: str, skills: List[str], llm: str): | |
self.name = name | |
self.description = description | |
self.skills = skills | |
self.text_gen_tool = TextGenerationTool(llm) | |
self._hf_api = HfApi() # Initialize HfApi here | |
def generate_agent_response(self, prompt: str) -> str: | |
return self.text_gen_tool.generate_text(prompt) | |
def create_agent_prompt(self) -> str: | |
skills_str = '\n'.join([f"* {skill}" for skill in self.skills]) | |
agent_prompt = f""" | |
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas: | |
{skills_str} | |
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter. | |
""" | |
return agent_prompt | |
def autonomous_build(self, chat_history: List[tuple[str, str]], workspace_projects: Dict[str, Dict], | |
project_name: str, selected_model: str, hf_token: str) -> tuple[str, str]: | |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) | |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()]) | |
next_step = "Based on the current state, the next logical step is to implement the main application logic." | |
return summary, next_step | |
def deploy_built_space_to_hf(self, project_name: str) -> str: | |
space_content = generate_space_content(project_name) | |
repository = self._hf_api.create_repo( | |
repo_id=project_name, | |
private=True, | |
token=hf_token, | |
exist_ok=True, | |
space_sdk="streamlit" | |
) | |
self._hf_api.upload_file( | |
path_or_fileobj=space_content, | |
path_in_repo="app.py", | |
repo_id=project_name, | |
repo_type="space", | |
token=hf_token | |
) | |
return repository.name | |
def has_valid_hf_token(self) -> bool: | |
return self._hf_api.whoami(token=hf_token) is not None | |
def process_input(input_text: str) -> str: | |
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium", tokenizer="microsoft/DialoGPT-medium", clean_up_tokenization_spaces=True) | |
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text'] | |
return response | |
def run_code(code: str) -> str: | |
try: | |
result = subprocess.run(code, shell=True, capture_output=True, text=True) | |
return result.stdout | |
except Exception as e: | |
return str(e) | |
def workspace_interface(project_name: str) -> str: | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if not os.path.exists(project_path): | |
os.makedirs(project_path) | |
st.session_state.workspace_projects[project_name] = {'files': []} | |
return f"Project '{project_name}' created successfully." | |
else: | |
return f"Project '{project_name}' already exists." | |
def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str: | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if not os.path.exists(project_path): | |
return f"Project '{project_name}' does not exist." | |
file_path = os.path.join(project_path, file_name) | |
with open(file_path, "w") as file: | |
file.write(code) | |
st.session_state.workspace_projects[project_name]['files'].append(file_name) | |
return f"Code added to '{file_name}' in project '{project_name}'." | |
def display_chat_history(chat_history: List[tuple[str, str]]) -> str: | |
return "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) | |
def display_workspace_projects(workspace_projects: Dict[str, Dict]) -> str: | |
return "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()]) | |
def generate_space_content(project_name: str) -> str: | |
# Logic to generate the Streamlit app content based on project_name | |
# ... (This is where you'll need to implement the actual code generation) | |
return "import streamlit as st\nst.title('My Streamlit App')\nst.write('Hello, world!')" | |
def analyze_code(code: str) -> List[str]: | |
hints = [] | |
# Example pointer: Suggest using list comprehensions | |
if re.search(r'for .* in .*:\n\s+.*\.append\(', code): | |
hints.append("Consider using a list comprehension instead of a loop for appending to a list.") | |
# Example pointer: Recommend using f-strings for string formatting | |
if re.search(r'\".*\%s\"|\'.*\%s\'', code) or re.search(r'\".*\%d\"|\'.*\%d\'', code): | |
hints.append("Consider using f-strings for cleaner and more efficient string formatting.") | |
# Example pointer: Avoid using global variables | |
if re.search(r'\bglobal\b', code): | |
hints.append("Avoid using global variables. Consider passing parameters or using classes.") | |
# Example pointer: Recommend using `with` statement for file operations | |
if re.search(r'open\(.+\)', code) and not re.search(r'with open\(.+\)', code): | |
hints.append("Consider using the `with` statement when opening files to ensure proper resource management.") | |
return hints | |
def get_code_completion(prompt: str) -> str: | |
# Generate code completion based on the current code input | |
# Use max_new_tokens instead of max_length | |
completions = code_generator(prompt, max_new_tokens=50, num_return_sequences=1) | |
return completions[0]['generated_text'] | |
def lint_code(code: str) -> List[str]: | |
# Capture pylint output | |
pylint_output = StringIO() | |
sys.stdout = pylint_output | |
# Run pylint on the provided code | |
lint.Run(['--from-stdin'], do_exit=False, input=code) | |
# Reset stdout | |
sys.stdout = sys.__stdout__ | |
# Extract pylint messages | |
messages = pylint_output.getvalue().splitlines() | |
return messages | |
def format_code(code: str) -> str: | |
# Format code using Black | |
formatted_code = black.format_str(code, mode=black.FileMode()) | |
return formatted_code |