Spaces:
Build error
Build error
acecalisto3
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, List, Optional
|
3 |
+
from transformers import (
|
4 |
+
AutoConfig,
|
5 |
+
AutoModelForSequenceClassification,
|
6 |
+
AutoTokenizer,
|
7 |
+
DataCollatorWithPadding,
|
8 |
+
HfArgumentParser,
|
9 |
+
PreTrainedModel,
|
10 |
+
PretrainedConfig,
|
11 |
+
Trainer,
|
12 |
+
training_args,
|
13 |
+
)
|
14 |
+
|
15 |
+
class MockOpenAI:
|
16 |
+
"""
|
17 |
+
A mock implementation of OpenAI's API using Hugging Face's pipeline for text generation.
|
18 |
+
|
19 |
+
:param api_key: Your Hugging Face API key, required for authentication.
|
20 |
+
:param base_url: The base URL for the Hugging Face API, defaults to the production URL.
|
21 |
+
:param model_name: The name of the pretrained model to use for text generation, defaults to 'gpt2'.
|
22 |
+
:param max_tokens: The maximum number of tokens to generate in the response, defaults to 50.
|
23 |
+
"""
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
api_key: Optional[str] = None,
|
27 |
+
base_url: Optional[str] = None,
|
28 |
+
model_name: Optional[str] = "gpt2",
|
29 |
+
max_tokens: int = 50,
|
30 |
+
):
|
31 |
+
self.api_key = api_key or os.environ.get("HUGGING_FACE_API_KEY")
|
32 |
+
self.base_url = base_url or "https://api-inference.huggingface.co/models"
|
33 |
+
self.model_name = model_name
|
34 |
+
self.max_tokens = max_tokens
|
35 |
+
self.config = AutoConfig.from_pretrained(self.model_name)
|
36 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
37 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name, config=self.config)
|
38 |
+
self.data_collator = DataCollatorWithPadding(self.tokenizer)
|
39 |
+
self.trainer = Trainer(
|
40 |
+
model=self.model,
|
41 |
+
args=training_args(
|
42 |
+
output_dir="./",
|
43 |
+
num_train_epochs=1,
|
44 |
+
learning_rate=1e-5,
|
45 |
+
per_device_train_batch_size=16,
|
46 |
+
per_device_eval_batch_size=16,
|
47 |
+
evaluation_strategy="epoch",
|
48 |
+
),
|
49 |
+
)
|
50 |
+
|
51 |
+
class Chat:
|
52 |
+
def __init__(self, mock_openai: MockOpenAI):
|
53 |
+
self.mock_openai = mock_openai
|
54 |
+
|
55 |
+
class Completions:
|
56 |
+
def __init__(self, mock_openai: MockOpenAI):
|
57 |
+
self.mock_openai = mock_openai
|
58 |
+
|
59 |
+
def create(
|
60 |
+
self,
|
61 |
+
messages: List[Dict[str, str]],
|
62 |
+
model: Optional[str] = None,
|
63 |
+
max_tokens: int = 50,
|
64 |
+
**kwargs,
|
65 |
+
):
|
66 |
+
"""
|
67 |
+
Generate a text completion based on the given messages.
|
68 |
+
|
69 |
+
:param messages: List of message objects, each containing 'role' and 'content'.
|
70 |
+
:param model: The name of the pretrained model to use for text generation, defaults to 'gpt2'.
|
71 |
+
:param max_tokens: The maximum number of tokens to generate in the response, defaults to 50.
|
72 |
+
:param kwargs: Additional keyword arguments to pass to the pipeline function.
|
73 |
+
:return: A dictionary containing the generated text.
|
74 |
+
"""
|
75 |
+
if not self.mock_openai.config.is_decoder:
|
76 |
+
raise ValueError("This model is not a decoder.")
|
77 |
+
|
78 |
+
model_name = model or self.mock_openai.model_name
|
79 |
+
prompt = " ".join([msg["content"] for msg in messages])
|
80 |
+
|
81 |
+
inputs = self.mock_openai.tokenizer(prompt, padding="max_length", truncation=True)
|
82 |
+
outputs = self.mock_openai.trainer.predict(inputs.to_tensor(pad_to_multiple_of=self.mock_openai.config.max_length))
|
83 |
+
result = self.mock_openai.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
84 |
+
|
85 |
+
if max_tokens is not None and len(result) > max_tokens:
|
86 |
+
result = result[:max_tokens]
|
87 |
+
|
88 |
+
return result
|
89 |
+
|
90 |
+
@property
|
91 |
+
def chat(self):
|
92 |
+
"""
|
93 |
+
Get the Chat class instance with the pretrained model for text generation.
|
94 |
+
|
95 |
+
:return: The Chat class instance.
|
96 |
+
"""
|
97 |
+
return self.Chat(self)
|
98 |
+
|
99 |
+
# Example usage
|
100 |
+
if __name__ == "__main__":
|
101 |
+
parser = HfArgumentParser(description="Mock OpenAI API using Hugging Face's pipeline for text generation.")
|
102 |
+
parser.add_argument("--model_name", default="gpt2", help="The name of the pretrained model to use for text generation.")
|
103 |
+
parser.add_argument("--max_tokens", type=int, default=50, help="The maximum number of tokens to generate in the response.")
|
104 |
+
args = parser.parse_args()
|
105 |
+
client = MockOpenAI(model_name=args.model_name, max_tokens=args.max_tokens)
|
106 |
+
chat_completion = client.chat.Completions().create(
|
107 |
+
messages=[
|
108 |
+
{
|
109 |
+
"role": "system",
|
110 |
+
"content": "You are a helpful assistant.",
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"role": "user",
|
114 |
+
"content": "What is deep learning?",
|
115 |
+
}
|
116 |
+
]
|
117 |
+
)
|
118 |
+
|
119 |
+
print(chat_completion)
|