Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
from transformers import pipeline
|
3 |
import logging
|
4 |
import torch
|
|
|
5 |
|
6 |
# Logging Setup
|
7 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
@@ -20,9 +21,38 @@ def get_model_pipeline(model_name):
|
|
20 |
logging.error(f"Error loading model pipeline: {e}")
|
21 |
return None
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Function to generate code
|
24 |
@st.cache_data
|
25 |
-
def generate_code(task_description, max_length, temperature, num_return_sequences, model_name):
|
26 |
code_pipeline = get_model_pipeline(model_name)
|
27 |
if code_pipeline is None:
|
28 |
return ["Error: Failed to load model pipeline."]
|
@@ -30,14 +60,17 @@ def generate_code(task_description, max_length, temperature, num_return_sequence
|
|
30 |
try:
|
31 |
logging.info(f"Generating code with input: {task_description}")
|
32 |
prompt = f"Develop code for the following task: {task_description}"
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
codes = [output['generated_text'] for output in outputs]
|
42 |
|
43 |
logging.info("Code generation completed successfully.")
|
@@ -78,13 +111,15 @@ def main():
|
|
78 |
|
79 |
# Options Section
|
80 |
st.header("Options")
|
81 |
-
col1, col2, col3 = st.columns(
|
82 |
with col1:
|
83 |
max_length = st.slider("Max Length", min_value=50, max_value=2048, value=250, step=50, help="Maximum length of the generated code.")
|
84 |
with col2:
|
85 |
temperature = st.slider("Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.1, help="Controls the creativity of the generated code.")
|
86 |
with col3:
|
87 |
num_return_sequences = st.slider("Number of Sequences", min_value=1, max_value=5, value=1, step=1, help="Number of code snippets to generate.")
|
|
|
|
|
88 |
|
89 |
# Generate Code Button
|
90 |
if st.button("Generate Code"):
|
@@ -92,7 +127,7 @@ def main():
|
|
92 |
# Clear previous generated codes
|
93 |
st.session_state.generated_codes = []
|
94 |
with st.spinner("Generating code..."):
|
95 |
-
st.session_state.generated_codes = generate_code(task_description, max_length, temperature, num_return_sequences, model_name)
|
96 |
st.header("Generated Code")
|
97 |
for idx, code in enumerate(st.session_state.generated_codes):
|
98 |
with st.expander(f"Generated Code {idx + 1}", expanded=True):
|
|
|
2 |
from transformers import pipeline
|
3 |
import logging
|
4 |
import torch
|
5 |
+
import numpy as np
|
6 |
|
7 |
# Logging Setup
|
8 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
21 |
logging.error(f"Error loading model pipeline: {e}")
|
22 |
return None
|
23 |
|
24 |
+
# Beam search implementation
|
25 |
+
def beam_search(model, prompt, beam_width=3, max_length=20):
|
26 |
+
sequences = [[list(prompt), 0.0]]
|
27 |
+
|
28 |
+
for _ in range(max_length):
|
29 |
+
all_candidates = list()
|
30 |
+
|
31 |
+
for seq, score in sequences:
|
32 |
+
if len(seq) > 0 and seq[-1] == model.tokenizer.eos_token_id:
|
33 |
+
all_candidates.append((seq, score))
|
34 |
+
continue
|
35 |
+
|
36 |
+
inputs = model.tokenizer(seq, return_tensors='pt')
|
37 |
+
outputs = model.model(**inputs)
|
38 |
+
logits = outputs.logits[0, -1, :]
|
39 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1).detach().cpu().numpy()
|
40 |
+
|
41 |
+
candidates = np.argsort(probabilities)[-beam_width:]
|
42 |
+
|
43 |
+
for candidate in candidates:
|
44 |
+
new_seq = seq + [candidate]
|
45 |
+
new_score = score + np.log(probabilities[candidate])
|
46 |
+
all_candidates.append((new_seq, new_score))
|
47 |
+
|
48 |
+
ordered = sorted(all_candidates, key=lambda tup: tup[1], reverse=True)
|
49 |
+
sequences = ordered[:beam_width]
|
50 |
+
|
51 |
+
return sequences[0][0]
|
52 |
+
|
53 |
# Function to generate code
|
54 |
@st.cache_data
|
55 |
+
def generate_code(task_description, max_length, temperature, num_return_sequences, model_name, beam_width=3):
|
56 |
code_pipeline = get_model_pipeline(model_name)
|
57 |
if code_pipeline is None:
|
58 |
return ["Error: Failed to load model pipeline."]
|
|
|
60 |
try:
|
61 |
logging.info(f"Generating code with input: {task_description}")
|
62 |
prompt = f"Develop code for the following task: {task_description}"
|
63 |
+
|
64 |
+
# Tokenize prompt for beam search
|
65 |
+
inputs = code_pipeline.tokenizer(prompt, return_tensors='pt')
|
66 |
+
input_ids = inputs['input_ids'][0].tolist()
|
67 |
+
|
68 |
+
outputs = []
|
69 |
+
for _ in range(num_return_sequences):
|
70 |
+
output_tokens = beam_search(code_pipeline, input_ids, beam_width=beam_width, max_length=max_length)
|
71 |
+
output_text = code_pipeline.tokenizer.decode(output_tokens, skip_special_tokens=True)
|
72 |
+
outputs.append({'generated_text': output_text})
|
73 |
+
|
74 |
codes = [output['generated_text'] for output in outputs]
|
75 |
|
76 |
logging.info("Code generation completed successfully.")
|
|
|
111 |
|
112 |
# Options Section
|
113 |
st.header("Options")
|
114 |
+
col1, col2, col3, col4 = st.columns(4)
|
115 |
with col1:
|
116 |
max_length = st.slider("Max Length", min_value=50, max_value=2048, value=250, step=50, help="Maximum length of the generated code.")
|
117 |
with col2:
|
118 |
temperature = st.slider("Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.1, help="Controls the creativity of the generated code.")
|
119 |
with col3:
|
120 |
num_return_sequences = st.slider("Number of Sequences", min_value=1, max_value=5, value=1, step=1, help="Number of code snippets to generate.")
|
121 |
+
with col4:
|
122 |
+
beam_width = st.slider("Beam Width", min_value=1, max_value=10, value=3, step=1, help="Beam width for beam search.")
|
123 |
|
124 |
# Generate Code Button
|
125 |
if st.button("Generate Code"):
|
|
|
127 |
# Clear previous generated codes
|
128 |
st.session_state.generated_codes = []
|
129 |
with st.spinner("Generating code..."):
|
130 |
+
st.session_state.generated_codes = generate_code(task_description, max_length, temperature, num_return_sequences, model_name, beam_width)
|
131 |
st.header("Generated Code")
|
132 |
for idx, code in enumerate(st.session_state.generated_codes):
|
133 |
with st.expander(f"Generated Code {idx + 1}", expanded=True):
|