acecalisto3 commited on
Commit
7d4516a
1 Parent(s): 3dcb660

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -3
app.py CHANGED
@@ -4,6 +4,8 @@ import random
4
  import json
5
  from datetime import datetime
6
  import gradio as gr # Corrected import for gradio
 
 
7
 
8
  class App(gr.Blocks): # Corrected class inheritance
9
  def __init__(self):
@@ -19,11 +21,49 @@ class App(gr.Blocks): # Corrected class inheritance
19
  "description": "A clickable button",
20
  "code_snippet": "gr.Button(value='{{label}}', variant='primary')"
21
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  # ... Other component definitions
23
  }
24
  self.nlp_model_names = [
25
  "google/flan-t5-small",
26
- # ... Other NLP model names
 
 
 
27
  ]
28
  self.nlp_models = []
29
  # self.initialize_nlp_models() # Moved to run() for Gradio
@@ -34,7 +74,7 @@ class App(gr.Blocks): # Corrected class inheritance
34
  try:
35
  # Assuming the use of transformers library for NLP models
36
  from transformers import pipeline
37
- model = pipeline('text-generation', model=nlp_model_name)
38
  self.nlp_models.append(model)
39
  except Exception as e:
40
  print(f"Failed to load model {nlp_model_name}: {e}")
@@ -43,7 +83,7 @@ class App(gr.Blocks): # Corrected class inheritance
43
  def get_nlp_response(self, input_text, model_index):
44
  if self.nlp_models[model_index]:
45
  response = self.nlp_models[model_index](input_text)
46
- return response[0]['generated_text']
47
  else:
48
  return "NLP model not available."
49
 
@@ -122,7 +162,36 @@ class App(gr.Blocks): # Corrected class inheritance
122
  return self.get_help_message()
123
  else:
124
  return "Unknown command. Type 'get_help_message' for available commands."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  def run(self):
127
  self.initialize_nlp_models() # Initialize NLP models here
128
  with gr.Blocks() as demo:
 
4
  import json
5
  from datetime import datetime
6
  import gradio as gr # Corrected import for gradio
7
+ import requests
8
+ from bs4 import BeautifulSoup
9
 
10
  class App(gr.Blocks): # Corrected class inheritance
11
  def __init__(self):
 
21
  "description": "A clickable button",
22
  "code_snippet": "gr.Button(value='{{label}}', variant='primary')"
23
  },
24
+ "Textbox": {
25
+ "properties": {
26
+ "label": "Enter text here...",
27
+ "lines": 1
28
+ },
29
+ "description": "A simple textbox for user input.",
30
+ "code_snippet": "gr.Textbox(label='{{label}}', lines={{lines}})"
31
+ },
32
+ "Slider": {
33
+ "properties": {
34
+ "label": "Adjust the slider:",
35
+ "minimum": 0,
36
+ "maximum": 100,
37
+ "value": 50
38
+ },
39
+ "description": "A slider for selecting a value within a range.",
40
+ "code_snippet": "gr.Slider(label='{{label}}', minimum={{minimum}}, maximum={{maximum}}, value={{value}})"
41
+ },
42
+ "Dropdown": {
43
+ "properties": {
44
+ "label": "Select an option:",
45
+ "choices": ["Option 1", "Option 2", "Option 3"],
46
+ "value": "Option 1"
47
+ },
48
+ "description": "A dropdown menu for selecting from a list of options.",
49
+ "code_snippet": "gr.Dropdown(label='{{label}}', choices={{choices}}, value='{{value}}')"
50
+ },
51
+ "Image": {
52
+ "properties": {
53
+ "label": "Upload an image:",
54
+ "type": "file"
55
+ },
56
+ "description": "An image component for displaying images.",
57
+ "code_snippet": "gr.Image(label='{{label}}', type='{{type}}')"
58
+ }
59
  # ... Other component definitions
60
  }
61
  self.nlp_model_names = [
62
  "google/flan-t5-small",
63
+ "facebook/bart-large-cnn", # Summarization
64
+ "gpt2", # Text Generation
65
+ "distilbert-base-uncased-finetuned-sst-2-english" # Sentiment Analysis
66
+ # ... Other NLP model names from Hugging Face
67
  ]
68
  self.nlp_models = []
69
  # self.initialize_nlp_models() # Moved to run() for Gradio
 
74
  try:
75
  # Assuming the use of transformers library for NLP models
76
  from transformers import pipeline
77
+ model = pipeline('text-generation', model=nlp_model_name) # Adjust pipeline task if needed
78
  self.nlp_models.append(model)
79
  except Exception as e:
80
  print(f"Failed to load model {nlp_model_name}: {e}")
 
83
  def get_nlp_response(self, input_text, model_index):
84
  if self.nlp_models[model_index]:
85
  response = self.nlp_models[model_index](input_text)
86
+ return response[0]['generated_text'] # Adjust response extraction if needed
87
  else:
88
  return "NLP model not available."
89
 
 
162
  return self.get_help_message()
163
  else:
164
  return "Unknown command. Type 'get_help_message' for available commands."
165
+ def execute_code(self, code):
166
+ try:
167
+ exec(code)
168
+ except Exception as e:
169
+ return f"Error executing code: {e}"
170
+ return "Code executed successfully"
171
+
172
+ def read_file(self, file_path):
173
+ try:
174
+ with open(file_path, 'r') as file:
175
+ content = file.read()
176
+ return content
177
+ except Exception as e:
178
+ return f"Error reading file: {e}"
179
 
180
+ def write_file(self, file_path, content):
181
+ try:
182
+ with open(file_path, 'w') as file:
183
+ file.write(content)
184
+ return "File written successfully"
185
+ except Exception as e:
186
+ return f"Error writing to file: {e}"
187
+
188
+ def fetch_web_content(self, url):
189
+ response = requests.get(url)
190
+ if response.status_code == 200:
191
+ soup = BeautifulSoup(response.content, 'html.parser')
192
+ return soup.prettify()
193
+ else:
194
+ return f"Failed to retrieve content. Status code: {response.status_code}"
195
  def run(self):
196
  self.initialize_nlp_models() # Initialize NLP models here
197
  with gr.Blocks() as demo: