acecalisto3 commited on
Commit
f9f73dd
·
verified ·
1 Parent(s): a01b01d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +159 -352
app.py CHANGED
@@ -2,19 +2,26 @@ import os
2
  import sys
3
  import subprocess
4
  import streamlit as st
 
 
 
 
5
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
6
  import black
7
  from pylint import lint
8
  from io import StringIO
9
- from transformers import pipeline
10
 
 
 
 
 
11
  pipe = pipeline("text-generation", model="bartowski/Llama-3-8B-Instruct-Coder-GGUF")
12
 
13
  HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
14
  PROJECT_ROOT = "projects"
15
  AGENT_DIRECTORY = "agents"
16
 
17
- # Global state to manage communication between Tool Box and Workspace Chat App
18
  if 'chat_history' not in st.session_state:
19
  st.session_state.chat_history = []
20
  if 'terminal_history' not in st.session_state:
@@ -29,6 +36,17 @@ if 'current_state' not in st.session_state:
29
  'workspace_chat': {}
30
  }
31
 
 
 
 
 
 
 
 
 
 
 
 
32
  class AIAgent:
33
  def __init__(self, name, description, skills):
34
  self.name = name
@@ -45,372 +63,161 @@ I am confident that I can leverage my expertise to assist you in developing and
45
  return agent_prompt
46
 
47
  def autonomous_build(self, chat_history, workspace_projects):
48
- """
49
- Autonomous build logic that continues based on the state of chat history and workspace projects.
50
- """
51
  summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
52
  summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
53
-
54
  next_step = "Based on the current state, the next logical step is to implement the main application logic."
55
-
56
  return summary, next_step
57
 
58
- def save_agent_to_file(agent):
59
- """Saves the agent's prompt to a file locally and then commits to the Hugging Face repository."""
60
- if not os.path.exists(AGENT_DIRECTORY):
61
- os.makedirs(AGENT_DIRECTORY)
62
- file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
63
- config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
64
- with open(file_path, "w") as file:
65
- file.write(agent.create_agent_prompt())
66
- with open(config_path, "w") as file:
67
- file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
68
- st.session_state.available_agents.append(agent.name)
69
-
70
- commit_and_push_changes(f"Add agent {agent.name}")
71
-
72
- def load_agent_prompt(agent_name):
73
- """Loads an agent prompt from a file."""
74
- file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
75
- if os.path.exists(file_path):
76
- with open(file_path, "r") as file:
77
- agent_prompt = file.read()
78
- return agent_prompt
79
- else:
80
- return None
81
-
82
- def create_agent_from_text(name, text):
83
- skills = text.split('\n')
84
- agent = AIAgent(name, "AI agent created from text input.", skills)
85
- save_agent_to_file(agent)
86
- return agent.create_agent_prompt()
87
 
88
- # Chat interface using a selected agent
89
- def chat_interface_with_agent(input_text, agent_name):
90
- agent_prompt = load_agent_prompt(agent_name)
91
- if agent_prompt is None:
92
- return f"Agent {agent_name} not found."
93
 
94
- # Load the GPT-2 model which is compatible with AutoModelForCausalLM
95
- model_name = "gpt2"
96
- try:
97
- model = AutoModel.from_pretrained("InferenceIllusionist/Meta-Llama-3.1-8B-Claude-iMat-GGUF")
98
- tokenizer = AutoTokenizer.from_pretrained("InferenceIllusionist/Meta-Llama-3.1-8B-Claude-iMat-GGUF")
99
- generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
100
- except EnvironmentError as e:
101
- return f"Error loading model: {e}"
102
 
103
- # Combine the agent prompt with user input
104
- combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
105
-
106
- # Truncate input text to avoid exceeding the model's maximum length
107
- max_input_length = 900
108
- input_ids = tokenizer.encode(combined_input, return_tensors="pt")
109
- if input_ids.shape[1] > max_input_length:
110
- input_ids = input_ids[:, :max_input_length]
111
 
112
- # Generate chatbot response
113
- outputs = model.generate(
114
- input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
115
- )
116
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
117
  return response
118
 
119
- def workspace_interface(project_name):
120
- project_path = os.path.join(PROJECT_ROOT, project_name)
121
- if not os.path.exists(PROJECT_ROOT):
122
- os.makedirs(PROJECT_ROOT)
123
- if not os.path.exists(project_path):
124
- os.makedirs(project_path)
125
- st.session_state.workspace_projects[project_name] = {"files": []}
126
- st.session_state.current_state['workspace_chat']['project_name'] = project_name
127
- commit_and_push_changes(f"Create project {project_name}")
128
- return f"Project {project_name} created successfully."
129
- else:
130
- return f"Project {project_name} already exists."
131
 
132
  def add_code_to_workspace(project_name, code, file_name):
133
- project_path = os.path.join(PROJECT_ROOT, project_name)
134
- if os.path.exists(project_path):
135
- file_path = os.path.join(project_path, file_name)
136
- with open(file_path, "w") as file:
137
- file.write(code)
138
- st.session_state.workspace_projects[project_name]["files"].append(file_name)
139
- st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
140
- commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
141
- return f"Code added to {file_name} in project {project_name} successfully."
 
 
 
 
 
 
142
  else:
143
- return f"Project {project_name} does not exist."
144
-
145
- def terminal_interface(command, project_name=None):
146
- if project_name:
147
- project_path = os.path.join(PROJECT_ROOT, project_name)
148
- if not os.path.exists(project_path):
149
- return f"Project {project_name} does not exist."
150
- result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
151
- else:
152
- result = subprocess.run(command, shell=True, capture_output=True, text=True)
153
- if result.returncode == 0:
154
- st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
155
- return result.stdout
156
- else:
157
- st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
158
- return result.stderr
159
-
160
- def code_editor_interface(code):
161
- try:
162
- formatted_code = black.format_str(code, mode=black.FileMode())
163
- except black.NothingChanged:
164
- formatted_code = code
165
- result = StringIO()
166
- sys.stdout = result
167
- sys.stderr = result
168
- (pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
169
- sys.stdout = sys.__stdout__
170
- sys.stderr = sys.__stderr__
171
- lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
172
- st.session_state.current_state['toolbox']['formatted_code'] = formatted_code
173
- st.session_state.current_state['toolbox']['lint_message'] = lint_message
174
- return formatted_code, lint_message
175
-
176
- def summarize_text(text):
177
- summarizer = pipeline("summarization")
178
- summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
179
- st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
180
- return summary[0]['summary_text']
181
-
182
- def sentiment_analysis(text):
183
- analyzer = pipeline("sentiment-analysis")
184
- sentiment = analyzer(text)
185
- st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
186
- return sentiment[0]
187
-
188
- def translate_code(code, input_language, output_language):
189
- # Define a dictionary to map programming languages to their corresponding file extensions
190
- language_extensions = {
191
- # ignore the specific languages right now, and continue to EOF
192
- }
193
-
194
- # Add code to handle edge cases such as invalid input and unsupported programming languages
195
- if input_language not in language_extensions:
196
- raise ValueError(f"Invalid input language: {input_language}")
197
- if output_language not in language_extensions:
198
- raise ValueError(f"Invalid output language: {output_language}")
199
-
200
- # Use the dictionary to map the input and output languages to their corresponding file extensions
201
- input_extension = language_extensions[input_language]
202
- output_extension = language_extensions[output_language]
203
-
204
- # Translate the code using the OpenAI API
205
- prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
206
- response = openai.ChatCompletion.create(
207
- model="gpt-4",
208
- messages=[
209
- {"role": "system", "content": "You are an expert software developer."},
210
- {"role": "user", "content": prompt}
211
- ]
212
- )
213
- translated_code = response.choices[0].message['content'].strip()
214
-
215
- # Return the translated code
216
- translated_code = response.choices[0].message['content'].strip()
217
- st.session_state.current_state['toolbox']['translated_code'] = translated_code
218
- return translated_code
219
-
220
- def generate_code(code_idea):
221
- response = openai.ChatCompletion.create(
222
- model="gpt-4",
223
- messages=[
224
- {"role": "system", "content": "You are an expert software developer."},
225
- {"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
226
- ]
227
- )
228
- generated_code = response.choices[0].message['content'].strip()
229
- st.session_state.current_state['toolbox']['generated_code'] = generated_code
230
- return generated_code
231
-
232
- def commit_and_push_changes(commit_message):
233
- """Commits and pushes changes to the Hugging Face repository."""
234
- commands = [
235
- "git add .",
236
- f"git commit -m '{commit_message}'",
237
- "git push"
238
- ]
239
- for command in commands:
240
- result = subprocess.run(command, shell=True, capture_output=True, text=True)
241
- if result.returncode != 0:
242
- st.error(f"Error executing command '{command}': {result.stderr}")
243
- break
244
-
245
- # Streamlit App
246
- st.title("AI Agent Creator")
247
-
248
- # Sidebar navigation
249
- st.sidebar.title("Navigation")
250
- app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
251
-
252
- if app_mode == "AI Agent Creator":
253
- # AI Agent Creator
254
- st.header("Create an AI Agent from Text")
255
-
256
- st.subheader("From Text")
257
- agent_name = st.text_input("Enter agent name:")
258
- text_input = st.text_area("Enter skills (one per line):")
259
- if st.button("Create Agent"):
260
- agent_prompt = create_agent_from_text(agent_name, text_input)
261
- st.success(f"Agent '{agent_name}' created and saved successfully.")
262
- st.session_state.available_agents.append(agent_name)
263
-
264
- elif app_mode == "Tool Box":
265
- # Tool Box
266
- st.header("AI-Powered Tools")
267
-
268
- # Chat Interface
269
- st.subheader("Chat with CodeCraft")
270
- chat_input = st.text_area("Enter your message:")
271
- if st.button("Send"):
272
- if chat_input.startswith("@"):
273
- agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name
274
- chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input
275
- chat_response = chat_interface_with_agent(chat_input, agent_name)
276
- else:
277
- chat_response = chat_interface(chat_input)
278
- st.session_state.chat_history.append((chat_input, chat_response))
279
- st.write(f"CodeCraft: {chat_response}")
280
-
281
- # Terminal Interface
282
- st.subheader("Terminal")
283
- terminal_input = st.text_input("Enter a command:")
284
- if st.button("Run"):
285
- terminal_output = terminal_interface(terminal_input)
286
- st.session_state.terminal_history.append((terminal_input, terminal_output))
287
- st.code(terminal_output, language="bash")
288
-
289
- # Code Editor Interface
290
- st.subheader("Code Editor")
291
- code_editor = st.text_area("Write your code:", height=300)
292
- if st.button("Format & Lint"):
293
- formatted_code, lint_message = code_editor_interface(code_editor)
294
- st.code(formatted_code, language="python")
295
- st.info(lint_message)
296
-
297
- # Text Summarization Tool
298
- st.subheader("Summarize Text")
299
- text_to_summarize = st.text_area("Enter text to summarize:")
300
- if st.button("Summarize"):
301
- summary = summarize_text(text_to_summarize)
302
- st.write(f"Summary: {summary}")
303
-
304
- # Sentiment Analysis Tool
305
- st.subheader("Sentiment Analysis")
306
- sentiment_text = st.text_area("Enter text for sentiment analysis:")
307
- if st.button("Analyze Sentiment"):
308
- sentiment = sentiment_analysis(sentiment_text)
309
- st.write(f"Sentiment: {sentiment}")
310
-
311
- # Text Translation Tool (Code Translation)
312
- st.subheader("Translate Code")
313
- code_to_translate = st.text_area("Enter code to translate:")
314
- source_language = st.text_input("Enter source language (e.g. 'Python'):")
315
- target_language = st.text_input("Enter target language (e.g. 'JavaScript'):")
316
- if st.button("Translate Code"):
317
- translated_code = translate_code(code_to_translate, source_language, target_language)
318
- st.code(translated_code, language=target_language.lower())
319
-
320
- # Code Generation
321
- st.subheader("Code Generation")
322
- code_idea = st.text_input("Enter your code idea:")
323
- if st.button("Generate Code"):
324
- generated_code = generate_code(code_idea)
325
- st.code(generated_code, language="python")
326
-
327
- # Display Preset Commands
328
- st.subheader("Preset Commands")
329
- preset_commands = {
330
- "Create a new project": "create_project('project_name')",
331
- "Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')",
332
- "Run terminal command": "terminal_interface('command', 'project_name')",
333
- "Generate code": "generate_code('code_idea')",
334
- "Summarize text": "summarize_text('text')",
335
- "Analyze sentiment": "sentiment_analysis('text')",
336
- "Translate code": "translate_code('code', 'source_language', 'target_language')",
337
- }
338
- for command_name, command in preset_commands.items():
339
- st.write(f"{command_name}: `{command}`")
340
-
341
- elif app_mode == "Workspace Chat App":
342
- # Workspace Chat App
343
- st.header("Workspace Chat App")
344
-
345
- # Project Workspace Creation
346
- st.subheader("Create a New Project")
347
- project_name = st.text_input("Enter project name:")
348
- if st.button("Create Project"):
349
- workspace_status = workspace_interface(project_name)
350
- st.success(workspace_status)
351
-
352
- # Add Code to Workspace
353
- st.subheader("Add Code to Workspace")
354
- code_to_add = st.text_area("Enter code to add to workspace:")
355
- file_name = st.text_input("Enter file name (e.g. 'app.py'):")
356
- if st.button("Add Code"):
357
- add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
358
- st.success(add_code_status)
359
-
360
- # Terminal Interface with Project Context
361
- st.subheader("Terminal (Workspace Context)")
362
- terminal_input = st.text_input("Enter a command within the workspace:")
363
- if st.button("Run Command"):
364
- terminal_output = terminal_interface(terminal_input, project_name)
365
- st.code(terminal_output, language="bash")
366
-
367
- # Chat Interface for Guidance
368
- st.subheader("Chat with CodeCraft for Guidance")
369
- chat_input = st.text_area("Enter your message for guidance:")
370
- if st.button("Get Guidance"):
371
- chat_response = chat_interface(chat_input)
372
- st.session_state.chat_history.append((chat_input, chat_response))
373
- st.write(f"CodeCraft: {chat_response}")
374
-
375
- # Display Chat History
376
- st.subheader("Chat History")
377
- for user_input, response in st.session_state.chat_history:
378
- st.write(f"User: {user_input}")
379
- st.write(f"CodeCraft: {response}")
380
-
381
- # Display Terminal History
382
- st.subheader("Terminal History")
383
- for command, output in st.session_state.terminal_history:
384
- st.write(f"Command: {command}")
385
- st.code(output, language="bash")
386
-
387
- # Display Projects and Files
388
- st.subheader("Workspace Projects")
389
- for project, details in st.session_state.workspace_projects.items():
390
- st.write(f"Project: {project}")
391
- for file in details['files']:
392
- st.write(f" - {file}")
393
-
394
- # Chat with AI Agents
395
- st.subheader("Chat with AI Agents")
396
- selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
397
- agent_chat_input = st.text_area("Enter your message for the agent:")
398
- if st.button("Send to Agent"):
399
- agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
400
- st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
401
- st.write(f"{selected_agent}: {agent_chat_response}")
402
-
403
- # Automate Build Process
404
- st.subheader("Automate Build Process")
405
- if st.button("Automate"):
406
- agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
407
- summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
408
- st.write("Autonomous Build Summary:")
409
- st.write(summary)
410
- st.write("Next Step:")
411
- st.write(next_step)
412
 
413
  # Display current state for debugging
414
  st.sidebar.subheader("Current State")
415
  st.sidebar.json(st.session_state.current_state)
416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import sys
3
  import subprocess
4
  import streamlit as st
5
+ from huggingface_hub import InferenceClient
6
+ import gradio as gr
7
+ import random
8
+ import prompts
9
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
10
  import black
11
  from pylint import lint
12
  from io import StringIO
 
13
 
14
+ # Initialize the InferenceClient for Mixtral-8x7B-Instruct-v0.1
15
+ client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
16
+
17
+ # Initialize the pipeline for Llama-3-8B-Instruct-Coder-GGUF
18
  pipe = pipeline("text-generation", model="bartowski/Llama-3-8B-Instruct-Coder-GGUF")
19
 
20
  HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
21
  PROJECT_ROOT = "projects"
22
  AGENT_DIRECTORY = "agents"
23
 
24
+ # Global state management
25
  if 'chat_history' not in st.session_state:
26
  st.session_state.chat_history = []
27
  if 'terminal_history' not in st.session_state:
 
36
  'workspace_chat': {}
37
  }
38
 
39
+ # Define the agents
40
+ agents = [
41
+ "WEB_DEV",
42
+ "AI_SYSTEM_PROMPT",
43
+ "PYTHON_CODE_DEV",
44
+ "CODE_REVIEW_ASSISTANT",
45
+ "CONTENT_WRITER_EDITOR",
46
+ "QUESTION_GENERATOR",
47
+ "HUGGINGFACE_FILE_DEV",
48
+ ]
49
+
50
  class AIAgent:
51
  def __init__(self, name, description, skills):
52
  self.name = name
 
63
  return agent_prompt
64
 
65
  def autonomous_build(self, chat_history, workspace_projects):
 
 
 
66
  summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
67
  summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
 
68
  next_step = "Based on the current state, the next logical step is to implement the main application logic."
 
69
  return summary, next_step
70
 
71
+ def format_prompt(message, history):
72
+ prompt = "<s>"
73
+ for user_prompt, bot_response in history:
74
+ prompt += f"[INST] {user_prompt} [/INST]"
75
+ prompt += f" {bot_response}</s> "
76
+ prompt += f"[INST] {message} [/INST]"
77
+ return prompt
78
+
79
+ def generate(prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
80
+ seed = random.randint(1, 1111111111111111)
81
+ agent = getattr(prompts, agent_name, prompts.WEB_DEV_SYSTEM_PROMPT)
82
+ system_prompt = agent
83
+
84
+ generate_kwargs = dict(
85
+ temperature=float(temperature),
86
+ max_new_tokens=max_new_tokens,
87
+ top_p=float(top_p),
88
+ repetition_penalty=repetition_penalty,
89
+ do_sample=True,
90
+ seed=seed,
91
+ )
 
 
 
 
 
 
 
 
92
 
93
+ formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
94
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
95
+ output = ""
 
 
96
 
97
+ for response in stream:
98
+ output += response.token.text
99
+ yield output
100
+ return output
 
 
 
 
101
 
102
+ def chat_interface(chat_input):
103
+ response = generate(chat_input, st.session_state.chat_history)
104
+ return response
 
 
 
 
 
105
 
106
+ def chat_interface_with_agent(chat_input, agent_name):
107
+ agent_prompt = getattr(prompts, agent_name, prompts.WEB_DEV_SYSTEM_PROMPT)
108
+ response = generate(chat_input, st.session_state.chat_history, agent_name=agent_name, sys_prompt=agent_prompt)
 
 
109
  return response
110
 
111
+ def terminal_interface(command, project_name):
112
+ # Implement terminal functionality here
113
+ return f"Executed command: {command} in project: {project_name}"
 
 
 
 
 
 
 
 
 
114
 
115
  def add_code_to_workspace(project_name, code, file_name):
116
+ if project_name not in st.session_state.workspace_projects:
117
+ st.session_state.workspace_projects[project_name] = {'files': []}
118
+ st.session_state.workspace_projects[project_name]['files'].append(file_name)
119
+ return f"Added {file_name} to {project_name}"
120
+
121
+ # Streamlit UI
122
+ st.title("DevToolKit: AI-Powered Development Environment")
123
+
124
+ # Project Management
125
+ st.header("Project Management")
126
+ project_name = st.text_input("Enter project name:")
127
+ if st.button("Create Project"):
128
+ if project_name not in st.session_state.workspace_projects:
129
+ st.session_state.workspace_projects[project_name] = {'files': []}
130
+ st.success(f"Created project: {project_name}")
131
  else:
132
+ st.warning(f"Project {project_name} already exists")
133
+
134
+ # Code Addition
135
+ st.subheader("Add Code to Workspace")
136
+ code_to_add = st.text_area("Enter code to add to workspace:")
137
+ file_name = st.text_input("Enter file name (e.g. 'app.py'):")
138
+ if st.button("Add Code"):
139
+ add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
140
+ st.success(add_code_status)
141
+
142
+ # Terminal Interface
143
+ st.subheader("Terminal (Workspace Context)")
144
+ terminal_input = st.text_input("Enter a command within the workspace:")
145
+ if st.button("Run Command"):
146
+ terminal_output = terminal_interface(terminal_input, project_name)
147
+ st.code(terminal_output, language="bash")
148
+
149
+ # Chat Interface
150
+ st.subheader("Chat with DevToolKit for Guidance")
151
+ chat_input = st.text_area("Enter your message for guidance:")
152
+ if st.button("Get Guidance"):
153
+ chat_response = chat_interface(chat_input)
154
+ st.session_state.chat_history.append((chat_input, chat_response))
155
+ st.write(f"DevToolKit: {chat_response}")
156
+
157
+ # Display Chat History
158
+ st.subheader("Chat History")
159
+ for user_input, response in st.session_state.chat_history:
160
+ st.write(f"User: {user_input}")
161
+ st.write(f"DevToolKit: {response}")
162
+
163
+ # Display Terminal History
164
+ st.subheader("Terminal History")
165
+ for command, output in st.session_state.terminal_history:
166
+ st.write(f"Command: {command}")
167
+ st.code(output, language="bash")
168
+
169
+ # Display Projects and Files
170
+ st.subheader("Workspace Projects")
171
+ for project, details in st.session_state.workspace_projects.items():
172
+ st.write(f"Project: {project}")
173
+ for file in details['files']:
174
+ st.write(f" - {file}")
175
+
176
+ # Chat with AI Agents
177
+ st.subheader("Chat with AI Agents")
178
+ selected_agent = st.selectbox("Select an AI agent", agents)
179
+ agent_chat_input = st.text_area("Enter your message for the agent:")
180
+ if st.button("Send to Agent"):
181
+ agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
182
+ st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
183
+ st.write(f"{selected_agent}: {agent_chat_response}")
184
+
185
+ # Automate Build Process
186
+ st.subheader("Automate Build Process")
187
+ if st.button("Automate"):
188
+ agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
189
+ summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
190
+ st.write("Autonomous Build Summary:")
191
+ st.write(summary)
192
+ st.write("Next Step:")
193
+ st.write(next_step)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194
 
195
  # Display current state for debugging
196
  st.sidebar.subheader("Current State")
197
  st.sidebar.json(st.session_state.current_state)
198
 
199
+ # Gradio Interface
200
+ additional_inputs = [
201
+ gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True),
202
+ gr.Textbox(label="System Prompt", max_lines=1, interactive=True),
203
+ gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
204
+ gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1000*10, step=64, interactive=True, info="The maximum numbers of new tokens"),
205
+ gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
206
+ gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens"),
207
+ ]
208
+
209
+ examples = [
210
+ ["Create a simple web application using Flask", agents[0], None, None, None, None, ],
211
+ ["Generate a Python script to perform a linear regression analysis", agents[2], None, None, None, None, ],
212
+ ["Create a Dockerfile for a Node.js application", agents[1], None, None, None, None, ],
213
+ # Add more examples as needed
214
+ ]
215
+
216
+ gr.ChatInterface(
217
+ fn=generate,
218
+ chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
219
+ additional_inputs=additional_inputs,
220
+ title="DevToolKit AI Assistant",
221
+ examples=examples,
222
+ concurrency_limit=20,
223
+ ).launch(show_api=True)