Spaces:
Sleeping
Sleeping
acecalisto3
commited on
Commit
•
208c5b6
1
Parent(s):
8058749
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as T
|
4 |
+
from torchvision.models.detection import maskrcnn_resnet50_fpn
|
5 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
6 |
+
from google_drive_downloader import GoogleDriveDownloader as gdd
|
7 |
+
|
8 |
+
# Download and load the RAG model and tokenizer
|
9 |
+
gdd.download_file_from_google_drive(file_id='your_model_file_id', dest_path='./model.pt')
|
10 |
+
gdd.download_file_from_google_drive(file_id='your_tokenizer_file_id', dest_path='./tokenizer')
|
11 |
+
|
12 |
+
tokenizer = RagTokenizer.from_pretrained('./tokenizer')
|
13 |
+
retriever = RagRetriever.from_pretrained('./model.pt')
|
14 |
+
model = RagSequenceForGeneration.from_pretrained('./model.pt')
|
15 |
+
|
16 |
+
# Load the Mask R-CNN model
|
17 |
+
model_rcnn = maskrcnn_resnet50_fpn(pretrained=True)
|
18 |
+
model_rcnn.eval()
|
19 |
+
|
20 |
+
# Define the class labels for COCO dataset
|
21 |
+
class_labels = [
|
22 |
+
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
23 |
+
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
|
24 |
+
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
25 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A',
|
26 |
+
'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
|
27 |
+
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
|
28 |
+
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
|
29 |
+
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
|
30 |
+
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
|
31 |
+
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
|
32 |
+
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
|
33 |
+
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
34 |
+
]
|
35 |
+
|
36 |
+
# Define the image-to-text object segmentation function
|
37 |
+
def image_to_text_segmentation(image):
|
38 |
+
# Convert the image to the expected format (RGB and tensor)
|
39 |
+
image = T.ToTensor()(image)
|
40 |
+
image = image.unsqueeze(0)
|
41 |
+
|
42 |
+
# Run the image through the Mask R-CNN model
|
43 |
+
with torch.no_grad():
|
44 |
+
predictions = model_rcnn(image)
|
45 |
+
|
46 |
+
# Extract the bounding boxes, labels, and masks from the predictions
|
47 |
+
boxes = predictions[0]['boxes'].tolist()
|
48 |
+
labels = [class_labels[i] for i in predictions[0]['labels'].tolist()]
|
49 |
+
masks = predictions[0]['masks'].squeeze().detach().cpu().numpy()
|
50 |
+
|
51 |
+
# Generate the segmented text for each object
|
52 |
+
segmented_text = []
|
53 |
+
for i in range(len(boxes)):
|
54 |
+
mask = masks[i]
|
55 |
+
object_text = ""
|
56 |
+
for j in range(mask.shape[0]):
|
57 |
+
for k in range(mask.shape[1]):
|
58 |
+
if mask[j][k]:
|
59 |
+
object_text += labels[i] + " "
|
60 |
+
segmented_text.append(object_text.strip())
|
61 |
+
|
62 |
+
return segmented_text
|
63 |
+
|
64 |
+
# Define the Gradio interface
|
65 |
+
input_image = gr.inputs.Image(label="Input Image")
|
66 |
+
input_text = gr.inputs.Textbox(label="Question")
|
67 |
+
output_text = gr.outputs.Textbox(label="Generated Text")
|
68 |
+
|
69 |
+
title = "RAG Text Generation and Object Segmentation"
|
70 |
+
description = "Generate text based on the given question using RAG model and perform object segmentation on the input image."
|
71 |
+
|
72 |
+
gr.Interface(
|
73 |
+
fn=generate_text,
|
74 |
+
inputs=input_text,
|
75 |
+
outputs=output_text,
|
76 |
+
title=title,
|
77 |
+
description=description,
|
78 |
+
examples=[
|
79 |
+
["What is the capital of France?"],
|
80 |
+
["Who is the president of the United States?"],
|
81 |
+
]
|
82 |
+
).launch()
|
83 |
+
|
84 |
+
gr.Interface(
|
85 |
+
fn=image_to_text_segmentation,
|
86 |
+
inputs=input_image,
|
87 |
+
outputs=output_text,
|
88 |
+
title="Image-to-Text Object Segmentation",
|
89 |
+
description="Segment objects in the image and generate corresponding text.",
|
90 |
+
).launch()
|