import gradio as gr import torch import torchvision.transforms as T from torchvision.models.detection import maskrcnn_resnet50_fpn from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration from google_drive_downloader import GoogleDriveDownloader as gdd # Download and load the RAG model and tokenizer gdd.download_file_from_google_drive(file_id='your_model_file_id', dest_path='./model.pt') gdd.download_file_from_google_drive(file_id='your_tokenizer_file_id', dest_path='./tokenizer') tokenizer = RagTokenizer.from_pretrained('./tokenizer') retriever = RagRetriever.from_pretrained('./model.pt') model = RagSequenceForGeneration.from_pretrained('./model.pt') # Load the Mask R-CNN model model_rcnn = maskrcnn_resnet50_fpn(pretrained=True) model_rcnn.eval() # Define the class labels for COCO dataset class_labels = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # Define the image-to-text object segmentation function def image_to_text_segmentation(image): # Convert the image to the expected format (RGB and tensor) image = T.ToTensor()(image) image = image.unsqueeze(0) # Run the image through the Mask R-CNN model with torch.no_grad(): predictions = model_rcnn(image) # Extract the bounding boxes, labels, and masks from the predictions boxes = predictions[0]['boxes'].tolist() labels = [class_labels[i] for i in predictions[0]['labels'].tolist()] masks = predictions[0]['masks'].squeeze().detach().cpu().numpy() # Generate the segmented text for each object segmented_text = [] for i in range(len(boxes)): mask = masks[i] object_text = "" for j in range(mask.shape[0]): for k in range(mask.shape[1]): if mask[j][k]: object_text += labels[i] + " " segmented_text.append(object_text.strip()) return segmented_text # Define the Gradio interface input_image = gr.inputs.Image(label="Input Image") input_text = gr.inputs.Textbox(label="Question") output_text = gr.outputs.Textbox(label="Generated Text") title = "RAG Text Generation and Object Segmentation" description = "Generate text based on the given question using RAG model and perform object segmentation on the input image." gr.Interface( fn=generate_text, inputs=input_text, outputs=output_text, title=title, description=description, examples=[ ["What is the capital of France?"], ["Who is the president of the United States?"], ] ).launch() gr.Interface( fn=image_to_text_segmentation, inputs=input_image, outputs=output_text, title="Image-to-Text Object Segmentation", description="Segment objects in the image and generate corresponding text.", ).launch()