Spaces:
Runtime error
Runtime error
File size: 11,176 Bytes
465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c 575405c 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c d1685e2 465494c 575405c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
import time
import hashlib
import logging
import datetime
import csv
from urllib.parse import urlparse
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException, NoSuchElementException, StaleElementReferenceException
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline
import feedparser
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Define constants
DEFAULT_FILE_PATH = "scraped_data"
PURPOSE = f"You go to Culvers sites, you continuously seek changes on them since your last observation. Anything new that gets logged and dumped into csv, stored in your log folder at user/app/scraped_data."
HISTORY = []
CURRENT_TASK = None
# Function to monitor URLs for changes
def monitor_urls(storage_location, urls, scrape_interval, content_type, selector=None):
global HISTORY
previous_hashes = {url: "" for url in urls}
try:
with webdriver.Chrome(service=Service(webdriver.ChromeDriverManager().install()), options=Options()) as driver:
while True:
for url in urls:
try:
driver.get(url)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, 'body'))) # Wait for basic page load
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
current_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector)))
current_content = [element.get_attribute('src') for element in elements]
except TimeoutException:
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
current_content = []
else:
current_content = driver.find_elements(By.TAG_NAME, "img")
else:
current_content = driver.page_source
current_hash = hashlib.md5(str(current_content).encode('utf-8')).hexdigest()
if current_hash != previous_hashes[url]:
previous_hashes[url] = current_hash
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
HISTORY.append(f"Change detected at {url} on {date_time_str}")
with open(os.path.join(storage_location, f"{urlparse(url).hostname}_changes.csv"), "a", newline="") as csvfile:
csv_writer = csv.DictWriter(csvfile, fieldnames=["date", "time", "url", "change"])
csv_writer.writerow({"date": date_time_str.split()[0], "time": date_time_str.split()[1], "url": url, "change": "Content changed"})
logging.info(f"Change detected at {url} on {date_time_str}")
except (NoSuchElementException, StaleElementReferenceException, Exception) as e:
logging.error(f"Error accessing {url}: {e}")
time.sleep(scrape_interval * 60) # Check every scrape_interval minutes
except Exception as e:
logging.error(f"Error starting ChromeDriver: {e}")
# Function to start scraping
def start_scraping(storage_location, urls, scrape_interval, content_type, selector=None):
global CURRENT_TASK, HISTORY
CURRENT_TASK = f"Monitoring URLs: {', '.join(urls)}"
HISTORY.append(f"Task started: {CURRENT_TASK}")
for url in urls:
# Create a folder for the URL
hostname = urlparse(url).hostname
folder_path = os.path.join(storage_location, hostname)
os.makedirs(folder_path, exist_ok=True)
# Log the initial observation
try:
with webdriver.Chrome(service=Service(webdriver.ChromeDriverManager().install()), options=Options()) as driver:
driver.get(url)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, 'body'))) # Wait for basic page load
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
initial_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector)))
initial_content = [element.get_attribute('src') for element in elements]
except TimeoutException:
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
initial_content = []
else:
initial_content = driver.find_elements(By.TAG_NAME, "img")
else:
initial_content = driver.page_source
initial_hash = hashlib.md5(str(initial_content).encode('utf-8')).hexdigest()
HISTORY.append(f"Initial observation at {url}: {initial_hash}")
with open(os.path.join(folder_path, f"{hostname}_initial_observation.txt"), "w") as file:
file.write(f"Initial observation at {url}: {initial_hash}")
except (NoSuchElementException, StaleElementReferenceException, Exception) as e:
HISTORY.append(f"Error accessing {url}: {e}")
# Monitor the URLs
monitor_urls(storage_location, urls, scrape_interval, content_type, selector)
return f"Started scraping {', '.join(urls)} every {scrape_interval} minutes."
# Function to display CSV content
def display_csv(storage_location, url):
hostname = urlparse(url).hostname
folder_path = os.path.join(storage_location, hostname)
csv_path = os.path.join(folder_path, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
with open(csv_path, "r") as file:
return file.read()
else:
return "No data available."
# Function to generate RSS feed for a given URL
def generate_rss_feed(storage_location, url):
hostname = urlparse(url).hostname
folder_path = os.path.join(storage_location, hostname)
csv_path = os.path.join(folder_path, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
with open(csv_path, "r") as file:
reader = csv.DictReader(file)
feed = feedparser.parse(f"rss.xml") # Create a new feed object
feed.feed.title = f"Changes for {hostname}"
feed.feed.link = url
feed.feed.description = "Recent changes detected on the website."
feed.entries = []
for row in reader:
feed.entries.append({
"title": f"Change detected at {row['url']}",
"link": row['url'],
"description": f"Content changed on {row['date']} at {row['time']}",
"published": datetime.datetime.strptime(f"{row['date']} {row['time']}", "%Y-%m-%d %H:%M:%S").isoformat(),
})
return feed.entries
else:
return "No data available."
# Function to define the chat response function using the Mistral model
def respond(message, history, system_message, max_tokens, temperature, top_p):
model = AutoModelForSeq2SeqLM.from_pretrained_model("mistralai/Mixtral-8x7B-Instruct-v0.1")
tokenizer = AutoTokenizer.from_pretrained_model("mistralai/Mixtral-8x7B-Instruct-v0.1")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
response = pipe(f"User: {message}\nHistory: {history}\nSystem: {system_message}", max_length=max_tokens, temperature=temperature, top_p=top_p)[0]
return response
# Define the Gradio interface
def create_interface():
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
message = gr.Textbox(label="Message")
system_message = gr.Textbox(value="You are a helpful assistant.", label="System message")
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
storage_location = gr.Textbox(value="scraped_data", label="Storage Location")
urls = gr.Textbox(label="URLs (comma separated)")
scrape_interval = gr.Slider(minimum=1, maximum=60, value=5, step=1, label="Scrape Interval (minutes)")
content_type = gr.Radio(choices=["text", "media", "both"], value="text", label="Content Type")
start_button = gr.Button("Start Scraping")
stop_button = gr.Button("Stop Scraping")
csv_output = gr.Textbox(label="CSV Output", interactive=False)
with gr.Column():
chat_history = gr.Chatbot(label="Chat History")
response_box = gr.Textbox(label="Response")
stop_scraping_flag = [False]
start_button.click(start_scraping, inputs=[storage_location, urls, scrape_interval, content_type], outputs=csv_output)
stop_button.click(stop_scraping, inputs=[stop_scraping_flag], outputs=[csv_output])
message.submit(respond, inputs=[message, chat_history, system_message, max_tokens, temperature, top_p], outputs=[chat_history, response_box])
# Add a button to display the CSV content for a selected URL
with gr.Row():
selected_url = gr.Textbox(label="Select URL for CSV Content")
csv_button = gr.Button("Display CSV Content")
csv_output = gr.Textbox(label="CSV Content Output", interactive=False)
csv_button.click(display_csv, inputs=[storage_location, selected_url], outputs=csv_output)
# Add a button to display the RSS feed for a selected URL
with gr.Row():
selected_url = gr.Textbox(label="Select URL for RSS Feed")
rss_button = gr.Button("Generate RSS Feed")
rss_output = gr.Textbox(label="RSS Feed Output", interactive=False)
rss_button.click(generate_rss_feed, inputs=[storage_location, selected_url], outputs=rss_output)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch() |