Spaces:
Runtime error
Runtime error
File size: 1,422 Bytes
7321c1c df717a9 7321c1c 03fef6f 7321c1c 03fef6f 7321c1c d409826 7321c1c ef088bc 03fef6f 7321c1c df717a9 7321c1c df717a9 972bb7b e98b8b3 7321c1c e98b8b3 726b8a1 d45cc49 7321c1c d45cc49 7321c1c d45cc49 7321c1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# ... (your existing imports and code before model loading) ...
# Dictionary to store model loading functions
model_loaders = {
"Falcon": lambda: load_model("tiiuae/falcon-7b"),
"Flan-T5": lambda: load_model("google/flan-t5-xl"),
# Add more models and their loading functions here
}
model_option = st.selectbox("Select a Model", list(model_loaders.keys()))
# Load the selected model
model = model_loaders[model_option]()
# ... (rest of your existing code) ...
def load_model(model_name: str):
"""
Loads the specified model and tokenizer.
"""
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, legacy=False)
model = AutoModelForCausalLM.from_pretrained(model_name)
# This should be inside the try block
max_supported_length = 2048 # Get this from the model config
openllama_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
truncation=True,
max_length=max_supported_length,
temperature=0.7,
top_p=0.95,
device=0 if torch.cuda.is_available() else -1,
)
logging.info(f"{model_name} loaded successfully.")
return openllama_pipeline
except Exception as e:
logging.error(f"Error loading {model_name} model: {e}")
return None
# ... (rest of your existing code) ...
|