Spaces:
Runtime error
Runtime error
File size: 30,288 Bytes
bf70dc8 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 bf70dc8 df717a9 bf70dc8 df717a9 bf70dc8 ca646d2 df717a9 b613fcb df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 bf70dc8 df717a9 bf70dc8 df717a9 bf70dc8 df717a9 bf70dc8 df717a9 ca646d2 df717a9 bf70dc8 df717a9 bf70dc8 df717a9 8c8eede df717a9 a4c9236 b9f24c9 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 b613fcb b68ac1e df717a9 2936fbe b613fcb df717a9 ca646d2 df717a9 ca646d2 bf70dc8 df717a9 bf70dc8 ca646d2 6ec50c7 df717a9 bf70dc8 df717a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 |
import os
import time
import hashlib
import logging
import datetime
import csv
import threading
import re
from urllib.parse import urlparse
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import (
TimeoutException,
NoSuchElementException,
StaleElementReferenceException,
)
from webdriver_manager.chrome import ChromeDriverManager
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import gradio as gr
import xml.etree.ElementTree as ET
import torch
import mysql.connector
from mysql.connector import errorcode
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# Define constants
DEFAULT_FILE_PATH = "scraped_data"
PURPOSE = (
"You go to Culvers sites, you continuously seek changes on them since your last observation. "
"Anything new that gets logged and dumped into csv, stored in your log folder at user/app/scraped_data."
)
# Global variables for task management
HISTORY = []
CURRENT_TASK = None
STOP_THREADS = False # Flag to stop scraping threads
# MySQL Database Connection
def get_db_connection():
"""
Establishes and returns a MySQL database connection using environment variables.
"""
try:
connection = mysql.connector.connect(
host=os.getenv("DB_HOST"),
user=os.getenv("DB_USER"),
password=os.getenv("DB_PASSWORD"),
database=os.getenv("DB_NAME")
)
if connection.is_connected():
logging.info("Connected to MySQL database.")
return connection
except mysql.connector.Error as err:
if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
logging.error("Invalid database credentials.")
elif err.errno == errorcode.ER_BAD_DB_ERROR:
logging.error("Database does not exist.")
else:
logging.error(err)
return None
# Initialize Database
def initialize_database():
"""
Initializes the database by creating necessary tables if they do not exist.
"""
connection = get_db_connection()
if connection is None:
logging.error("Failed to connect to the database. Initialization aborted.")
return
cursor = connection.cursor()
try:
# Create table for scraped data
create_scraped_data_table = """
CREATE TABLE IF NOT EXISTS scraped_data (
id INT AUTO_INCREMENT PRIMARY KEY,
url VARCHAR(255) NOT NULL,
content_hash VARCHAR(64) NOT NULL,
change_detected DATETIME NOT NULL
)
"""
cursor.execute(create_scraped_data_table)
logging.info("Table 'scraped_data' is ready.")
# Create table for action logs
create_action_logs_table = """
CREATE TABLE IF NOT EXISTS action_logs (
id INT AUTO_INCREMENT PRIMARY KEY,
action VARCHAR(255) NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
"""
cursor.execute(create_action_logs_table)
logging.info("Table 'action_logs' is ready.")
except mysql.connector.Error as err:
logging.error(f"Error creating tables: {err}")
finally:
cursor.close()
connection.close()
logging.info("Database initialization complete.")
# Function to monitor URLs for changes
def monitor_urls(
storage_location: str,
urls: list,
scrape_interval: int,
content_type: str,
selector: str = None,
):
"""
Monitors the specified URLs for changes and logs any detected changes to the database.
"""
global HISTORY, STOP_THREADS
previous_hashes = {url: "" for url in urls}
options = Options()
options.add_argument("--headless")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
driver = create_driver(options)
if driver is None:
logging.error("WebDriver could not be initialized. Exiting monitor.")
return
try:
while not STOP_THREADS:
for url in urls:
try:
driver.get(url)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
current_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
)
current_content = [element.get_attribute("src") for element in elements]
except TimeoutException:
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
current_content = []
else:
elements = driver.find_elements(By.TAG_NAME, "img")
current_content = [element.get_attribute("src") for element in elements]
else:
current_content = driver.page_source
current_hash = hashlib.md5(str(current_content).encode("utf-8")).hexdigest()
if current_hash != previous_hashes[url]:
previous_hashes[url] = current_hash
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
HISTORY.append(f"Change detected at {url} on {date_time_str}")
# Insert change into MySQL database
connection = get_db_connection()
if connection:
cursor = connection.cursor()
insert_query = """
INSERT INTO scraped_data (url, content_hash, change_detected)
VALUES (%s, %s, %s)
"""
cursor.execute(insert_query, (url, current_hash, date_time_str))
connection.commit()
cursor.close()
connection.close()
logging.info(f"Change detected at {url} on {date_time_str} and logged to database.")
else:
logging.error("Failed to connect to database. Change not logged.")
except (
NoSuchElementException,
StaleElementReferenceException,
TimeoutException,
Exception,
) as e:
logging.error(f"Error accessing {url}: {e}")
time.sleep(scrape_interval * 60) # Wait for the next scrape interval
finally:
driver.quit()
logging.info("ChromeDriver session ended.")
# Function to create WebDriver
def create_driver(options: Options) -> webdriver.Chrome:
"""
Initializes and returns a Selenium Chrome WebDriver instance.
"""
try:
driver = webdriver.Chrome(
service=Service(ChromeDriverManager().install()), options=options
)
logging.info("ChromeDriver initialized successfully.")
return driver
except Exception as exception:
logging.error(f"Error initializing ChromeDriver: {exception}")
return None
# Function to get initial observation
def get_initial_observation(
driver: webdriver.Chrome, url: str, content_type: str, selector: str = None
) -> str:
"""
Retrieves the initial content from the URL and returns its MD5 hash.
"""
try:
driver.get(url)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
initial_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
)
initial_content = [element.get_attribute("src") for element in elements]
except TimeoutException:
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
initial_content = []
else:
elements = driver.find_elements(By.TAG_NAME, "img")
initial_content = [element.get_attribute("src") for element in elements]
else:
initial_content = driver.page_source
initial_hash = hashlib.md5(str(initial_content).encode("utf-8")).hexdigest()
logging.info(f"Initial hash for {url}: {initial_hash}")
return initial_hash
except Exception as exception:
logging.error(f"Error accessing {url}: {exception}")
return None
# Function to start scraping
def start_scraping(
storage_location: str,
urls: str,
scrape_interval: int,
content_type: str,
selector: str = None,
) -> str:
"""
Starts the scraping process in a separate thread.
"""
global CURRENT_TASK, HISTORY, STOP_THREADS
if STOP_THREADS:
STOP_THREADS = False # Reset the flag if previously stopped
url_list = [url.strip() for url in urls.split(",") if url.strip()]
CURRENT_TASK = f"Monitoring URLs: {', '.join(url_list)}"
HISTORY.append(f"Task started: {CURRENT_TASK}")
logging.info(f"Task started: {CURRENT_TASK}")
# Initialize database tables
initialize_database()
for url in url_list:
# Create a folder for the URL (if still needed for CSVs)
hostname = urlparse(url).hostname
folder_path = os.path.join(storage_location, hostname)
os.makedirs(folder_path, exist_ok=True)
# Log the initial observation
try:
options = Options()
options.add_argument("--headless")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
driver = create_driver(options)
if driver is None:
continue
initial_hash = get_initial_observation(driver, url, content_type, selector)
if initial_hash:
HISTORY.append(f"Initial observation at {url}: {initial_hash}")
# Insert initial observation into MySQL database
connection = get_db_connection()
if connection:
cursor = connection.cursor()
insert_query = """
INSERT INTO scraped_data (url, content_hash, change_detected)
VALUES (%s, %s, %s)
"""
cursor.execute(insert_query, (url, initial_hash, datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")))
connection.commit()
cursor.close()
connection.close()
logging.info(f"Initial observation logged for {url}")
else:
logging.error("Failed to connect to database. Initial observation not logged.")
except Exception as e:
HISTORY.append(f"Error accessing {url}: {e}")
logging.error(f"Error accessing {url}: {e}")
finally:
driver.quit()
# Start the monitoring thread
monitor_thread = threading.Thread(
target=monitor_urls,
args=(storage_location, url_list, scrape_interval, content_type, selector),
daemon=True,
)
monitor_thread.start()
logging.info("Started scraping thread.")
return f"Started scraping {', '.join(url_list)} every {scrape_interval} minutes."
# Function to stop scraping
def stop_scraping() -> str:
"""
Stops all ongoing scraping threads.
"""
global STOP_THREADS
STOP_THREADS = True
HISTORY.append("Scraping stopped by user.")
logging.info("Scraping stop signal sent.")
return "Scraping has been stopped."
# Function to display CSV content from MySQL
def display_csv(storage_location: str, url: str) -> str:
"""
Fetches and returns the scraped data for a given URL from the MySQL database.
"""
try:
connection = get_db_connection()
if not connection:
return "Failed to connect to the database."
cursor = connection.cursor(dictionary=True)
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC"
cursor.execute(query, (url,))
results = cursor.fetchall()
if not results:
return "No data available for the selected URL."
df = pd.DataFrame(results)
cursor.close()
connection.close()
return df.to_string(index=False)
except Exception as e:
logging.error(f"Error fetching data for {url}: {e}")
return f"Error fetching data for {url}: {e}"
# Function to generate RSS feed from MySQL data
def generate_rss_feed(storage_location: str, url: str) -> str:
"""
Generates an RSS feed for the latest changes detected on a given URL from the MySQL database.
"""
try:
connection = get_db_connection()
if not connection:
return "Failed to connect to the database."
cursor = connection.cursor(dictionary=True)
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC LIMIT 10"
cursor.execute(query, (url,))
results = cursor.fetchall()
if not results:
return "No changes detected to include in RSS feed."
# Create the root RSS element
rss = ET.Element("rss", version="2.0")
channel = ET.SubElement(rss, "channel")
# Add channel elements
title = ET.SubElement(channel, "title")
title.text = f"RSS Feed for {urlparse(url).hostname}"
link = ET.SubElement(channel, "link")
link.text = url
description = ET.SubElement(channel, "description")
description.text = "Recent changes detected on the website."
# Add items to the feed
for row in results:
item = ET.SubElement(channel, "item")
item_title = ET.SubElement(item, "title")
item_title.text = f"Change detected at {row['url']}"
item_link = ET.SubElement(item, "link")
item_link.text = row["url"]
item_description = ET.SubElement(item, "description")
item_description.text = f"Content changed on {row['change_detected']}"
pub_date = ET.SubElement(item, "pubDate")
pub_date.text = datetime.datetime.strptime(
str(row['change_detected']), "%Y-%m-%d %H:%M:%S"
).strftime("%a, %d %b %Y %H:%M:%S +0000")
# Generate the XML string
rss_feed = ET.tostring(rss, encoding="utf-8", method="xml")
return rss_feed.decode("utf-8")
except Exception as e:
logging.error(f"Error generating RSS feed for {url}: {e}")
return f"Error generating RSS feed for {url}: {e}"
finally:
cursor.close()
connection.close()
# Function to load the Mistral model
def load_model():
"""
Loads the Mistral model and tokenizer once and returns the pipeline.
"""
model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1,
)
logging.info("Mistral model loaded successfully.")
return pipe
except Exception as e:
logging.error(f"Error loading Mistral model: {e}")
return None
# Load the model once at the start
chat_pipeline = load_model()
# Function to parse user commands
def parse_command(message: str) -> tuple:
"""
Parses the user message to identify if it contains a command.
Returns the command and its parameters if found, else (None, None).
"""
# Define command patterns
patterns = {
"filter": r"filter\s+(?P<words>[\w\s,]+)\s+in\s+column\s+(?P<column>\w+)",
"sort": r"sort\s+(?P<column>\w+)\s+(?P<order>ascending|descending)",
"export": r"export\s+to\s+csv\s+as\s+(?P<filename>\w+\.csv)",
"log": r"log\s+action\s+(?P<action>.+)",
}
for command, pattern in patterns.items():
match = re.search(pattern, message, re.IGNORECASE)
if match:
params = match.groupdict()
return command, params
return None, None
# Function to execute parsed commands
def execute_command(command: str, params: dict) -> str:
"""
Executes the corresponding function based on the command and parameters.
"""
if command == "filter":
words = [word.strip() for word in params["words"].split(",")]
column = params["column"]
return filter_data(column, words)
elif command == "sort":
column = params["column"]
order = params["order"]
return sort_data(column, order)
elif command == "export":
filename = params["filename"]
return export_csv(filename)
elif command == "log":
action = params["action"]
return log_action(action)
else:
return "Unknown command."
# Data Manipulation Functions
def filter_data(column: str, words: list) -> str:
"""
Filters the scraped data to include only rows where the specified column contains the given words.
Saves the filtered data to a new CSV file.
"""
try:
latest_csv = get_latest_csv()
if not latest_csv:
return "No CSV files found to filter."
df = pd.read_csv(latest_csv)
# Create a regex pattern to match any of the words
pattern = '|'.join(words)
filtered_df = df[df[column].astype(str).str.contains(pattern, case=False, na=False)]
if filtered_df.empty:
return f"No records found with words {words} in column '{column}'."
# Save the filtered data to a new CSV
filtered_csv = latest_csv.replace(".csv", "_filtered.csv")
filtered_df.to_csv(filtered_csv, index=False)
logging.info(f"Data filtered on column '{column}' for words {words}.")
return f"Data filtered and saved to {filtered_csv}."
except Exception as e:
logging.error(f"Error filtering data: {e}")
return f"Error filtering data: {e}"
def sort_data(column: str, order: str) -> str:
"""
Sorts the scraped data based on the specified column and order.
Saves the sorted data to a new CSV file.
"""
try:
latest_csv = get_latest_csv()
if not latest_csv:
return "No CSV files found to sort."
df = pd.read_csv(latest_csv)
ascending = True if order.lower() == "ascending" else False
sorted_df = df.sort_values(by=column, ascending=ascending)
# Save the sorted data to a new CSV
sorted_csv = latest_csv.replace(".csv", f"_sorted_{order.lower()}.csv")
sorted_df.to_csv(sorted_csv, index=False)
logging.info(f"Data sorted on column '{column}' in {order} order.")
return f"Data sorted and saved to {sorted_csv}."
except Exception as e:
logging.error(f"Error sorting data: {e}")
return f"Error sorting data: {e}"
def export_csv(filename: str) -> str:
"""
Exports the latest scraped data to a specified CSV filename.
"""
try:
latest_csv = get_latest_csv()
if not latest_csv:
return "No CSV files found to export."
export_path = os.path.join(os.path.dirname(latest_csv), filename)
df = pd.read_csv(latest_csv)
df.to_csv(export_path, index=False)
logging.info(f"Data exported to {export_path}.")
return f"Data exported to {export_path}."
except Exception as e:
logging.error(f"Error exporting CSV: {e}")
return f"Error exporting CSV: {e}"
def log_action(action: str) -> str:
"""
Logs a custom action message to the MySQL database.
"""
try:
connection = get_db_connection()
if not connection:
return "Failed to connect to the database."
cursor = connection.cursor()
insert_query = """
INSERT INTO action_logs (action)
VALUES (%s)
"""
cursor.execute(insert_query, (action,))
connection.commit()
cursor.close()
connection.close()
HISTORY.append(f"User Action Logged: {action}")
logging.info(f"Action logged: {action}")
return f"Action logged: {action}"
except Exception as e:
logging.error(f"Error logging action: {e}")
return f"Error logging action: {e}"
def get_latest_csv() -> str:
"""
Retrieves the latest CSV file from the storage directory based on modification time.
"""
try:
storage_dirs = [d for d in os.listdir(DEFAULT_FILE_PATH) if os.path.isdir(os.path.join(DEFAULT_FILE_PATH, d))]
if not storage_dirs:
return None
latest_csv = None
latest_time = 0
for dir_name in storage_dirs:
dir_path = os.path.join(DEFAULT_FILE_PATH, dir_name)
csv_files = [f for f in os.listdir(dir_path) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
for csv_file in csv_files:
csv_path = os.path.join(dir_path, csv_file)
mod_time = os.path.getmtime(csv_path)
if mod_time > latest_time:
latest_time = mod_time
latest_csv = csv_path
return latest_csv
except Exception as e:
logging.error(f"Error retrieving latest CSV: {e}")
return None
# Chat Response Function with Dynamic Command Handling
def respond(
message: str,
history: list,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
) -> str:
"""
Generates a response using the Mistral model based on the user's message and history.
Additionally, handles dynamic commands to interact with individual components.
"""
if chat_pipeline is None:
return "Error: Chat model is not loaded."
try:
# Check if the message contains a command
command, params = parse_command(message)
if command:
# Execute the corresponding function
response = execute_command(command, params)
else:
# Generate a regular response using the model
prompt = (
f"System: {system_message}\n"
f"History: {history}\n"
f"User: {message}\n"
f"Assistant:"
)
response = chat_pipeline(
prompt,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
num_return_sequences=1,
)[0]["generated_text"]
# Extract the assistant's reply
response = response.split("Assistant:")[-1].strip()
return response
except Exception as e:
logging.error(f"Error generating response: {e}")
return "Error generating response."
# Function to load the Mistral model
def load_model():
"""
Loads the Mistral model and tokenizer once and returns the pipeline.
"""
model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1,
)
logging.info("Mistral model loaded successfully.")
return pipe
except Exception as e:
logging.error(f"Error loading Mistral model: {e}")
return None
# Load the model once at the start
chat_pipeline = load_model()
# Define the Gradio interface
def create_interface() -> gr.Blocks:
"""
Defines and returns the Gradio interface for the application.
"""
with gr.Blocks() as demo:
gr.Markdown("# All-in-One Scraper, Database, and RSS Feeder")
with gr.Row():
with gr.Column():
# Scraping Controls
storage_location = gr.Textbox(
value=DEFAULT_FILE_PATH, label="Storage Location"
)
urls = gr.Textbox(
label="URLs (comma separated)",
placeholder="https://example.com, https://anotherexample.com",
)
scrape_interval = gr.Slider(
minimum=1,
maximum=60,
value=5,
step=1,
label="Scrape Interval (minutes)",
)
content_type = gr.Radio(
choices=["text", "media", "both"],
value="text",
label="Content Type",
)
selector = gr.Textbox(
label="CSS Selector for Media (Optional)",
placeholder="e.g., img.main-image",
)
start_button = gr.Button("Start Scraping")
stop_button = gr.Button("Stop Scraping")
status_output = gr.Textbox(
label="Status Output", interactive=False, lines=2
)
with gr.Column():
# Chat Interface
chat_history = gr.Chatbot(label="Chat History")
with gr.Row():
message = gr.Textbox(label="Message", placeholder="Type your message here...")
system_message = gr.Textbox(
value="You are a helpful assistant.", label="System message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens",
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
)
response_box = gr.Textbox(label="Response", interactive=False, lines=2)
with gr.Row():
with gr.Column():
# CSV Display Controls
selected_url_csv = gr.Textbox(
label="Select URL for CSV Content",
placeholder="https://example.com",
)
csv_button = gr.Button("Display CSV Content")
csv_content_output = gr.Textbox(
label="CSV Content Output", interactive=False, lines=10
)
with gr.Column():
# RSS Feed Generation Controls
selected_url_rss = gr.Textbox(
label="Select URL for RSS Feed",
placeholder="https://example.com",
)
rss_button = gr.Button("Generate RSS Feed")
rss_output = gr.Textbox(
label="RSS Feed Output", interactive=False, lines=20
)
# Connect buttons to their respective functions
start_button.click(
fn=start_scraping,
inputs=[
storage_location,
urls,
scrape_interval,
content_type,
selector,
],
outputs=status_output,
)
stop_button.click(fn=stop_scraping, outputs=status_output)
csv_button.click(
fn=display_csv,
inputs=[storage_location, selected_url_csv],
outputs=csv_content_output,
)
rss_button.click(
fn=generate_rss_feed,
inputs=[storage_location, selected_url_rss],
outputs=rss_output,
)
# Connect message submission to the chat interface
def update_chat(message_input, history, system_msg, max_toks, temp, top_p_val):
if not message_input.strip():
return history, "Please enter a message."
response = respond(
message_input,
history,
system_msg,
max_toks,
temp,
top_p_val,
)
history.append((message_input, response))
return history, response
message.submit(
update_chat,
inputs=[
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
],
outputs=[chat_history, response_box],
)
return demo
# Initialize database on script start
initialize_database()
if __name__ == "__main__":
demo = create_interface()
demo.launch() |