CEEMEESEEK / app.py
acecalisto3's picture
Update app.py
4e5b9ff verified
raw
history blame
9.55 kB
import datetime
import os
import csv
import time
import hashlib
import logging
import gradio as gr
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from webdriver_manager.chrome import ChromeDriverManager
from huggingface_hub import InferenceClient
import random
import yaml
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Define constants
PREFIX = "Task started at {date_time_str}. Purpose: {purpose}"
TASK_PROMPT = "Current task: {task}. History:\n{history}"
# Define current date/time
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Define purpose
purpose = """
You go to Culvers sites, you continuously seek changes on them since your last observation.
Anything new that gets logged and dumped into csv, stored in your log folder at user/app/scraped_data.
"""
# Define history
history = []
# Define current task
current_task = None
# Default file path
default_file_path = "user/app/scraped_data/culver/culvers_changes.csv"
# Ensure the directory exists
os.makedirs(os.path.dirname(default_file_path), exist_ok=True)
# Function to monitor URLs for changes
def monitor_urls(storage_location, urls, scrape_interval, content_type):
global history
previous_hashes = [""] * len(urls)
# Ensure the directory exists
os.makedirs(os.path.dirname(storage_location), exist_ok=True)
with open(storage_location, "w", newline='') as csvfile:
csv_toolkit = csv.DictWriter(csvfile, fieldnames=["date", "time", "url", "change"])
csv_toolkit.writeheader()
options = Options()
options.headless = True
options.add_argument("--disable-gpu")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
try:
with webdriver.Chrome(service=Service(ChromeDriverManager().install()), options=options) as driver:
while True:
for i, url in enumerate(urls):
try:
driver.get(url)
time.sleep(2) # Wait for the page to load
if content_type == "text":
current_content = driver.page_source
elif content_type == "media":
current_content = driver.find_elements_by_tag_name("img")
else:
current_content = driver.page_source
current_hash = hashlib.md5(str(current_content).encode('utf-8')).hexdigest()
if current_hash != previous_hashes[i]:
previous_hashes[i] = current_hash
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
history.append(f"Change detected at {url} on {date_time_str}")
csv_toolkit.writerow({"date": date_time_str.split()[0], "time": date_time_str.split()[1], "url": url, "change": "Content changed"})
logging.info(f"Change detected at {url} on {date_time_str}")
except Exception as e:
logging.error(f"Error accessing {url}: {e}")
time.sleep(scrape_interval * 60) # Check every scrape_interval minutes
except Exception as e:
logging.error(f"Error starting ChromeDriver: {e}")
# Define main function to handle user input
def handle_input(storage_location, urls, scrape_interval, content_type):
global current_task, history
current_task = f"Monitoring URLs: {', '.join(urls)}"
history.append(f"Task started: {current_task}")
monitor_urls(storage_location, urls, scrape_interval, content_type)
return TASK_PROMPT.format(task=current_task, history="\n".join(map(str, history)))
# Load custom prompts
try:
with open('custom_prompts.yaml', 'r') as fp:
custom_prompts = yaml.safe_load(fp)
except FileNotFoundError:
custom_prompts = {
"WEB_DEV": "",
"AI_SYSTEM_PROMPT": "",
"PYTHON_CODE_DEV": "",
"CODE_GENERATION": "",
"CODE_INTERPRETATION": "",
"CODE_TRANSLATION": "",
"CODE_IMPLEMENTATION": ""
}
# Define the Mistral inference client
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
VERBOSE = True
MAX_HISTORY = 125
def format_prompt(message, history):
prompt = "<s>"
for entry in history:
if isinstance(entry, tuple) and len(entry) == 2:
user_prompt, bot_response = entry
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV",
"CODE_GENERATION",
"CODE_INTERPRETATION",
"CODE_TRANSLATION",
"CODE_IMPLEMENTATION"
]
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.7,
):
seed = random.randint(1, 1111111111111111)
agent = custom_prompts[agent_name]
system_prompt = agent if sys_prompt == "" else sys_prompt
temperature = max(float(temperature), 1e-2)
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
formatted_prompt = format_prompt(f"{system_prompt}\n\n{prompt}", history)
output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, return_full_text=False)
return output
# Define the chat response function
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
):
response = generate(
prompt=message,
history=history,
sys_prompt=system_message,
temperature=temperature,
max_new_tokens=max_tokens,
top_p=top_p
)
return response
# Function to start scraping
def start_scraping(storage_location, url1, url2, url3, url4, url5, url6, url7, url8, url9, url10, scrape_interval, content_type):
urls = [url for url in [url1, url2, url3, url4, url5, url6, url7, url8, url9, url10] if url]
handle_input(storage_location, urls, scrape_interval, content_type)
return f"Started scraping {', '.join(urls)} every {scrape_interval} minutes."
# Function to display CSV content
def display_csv(storage_location):
if os.path.exists(storage_location):
with open(storage_location, "r") as file:
return file.read()
else:
return "No data available."
# Create Gradio interface
def chat_interface(message, system_message, max_tokens, temperature, top_p, storage_location, url1, url2, url3, url4, url5, url6, url7, url8, url9, url10, scrape_interval, content_type):
global history
response = respond(message, history, system_message, max_tokens, temperature, top_p)
history.append((message, response))
return history, ""
demo = gr.Blocks()
with demo:
with gr.Row():
with gr.Column():
message = gr.Textbox(label="Message")
system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message")
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
storage_location = gr.Textbox(value=default_file_path, label="Storage Location")
url1 = gr.Textbox(value="https://www.culver.k12.in.us/", label="URL 1")
url2 = gr.Textbox(value="https://www.facebook.com/CulverCommunitySchools", label="URL 2")
url3 = gr.Textbox(label="URL 3")
url4 = gr.Textbox(label="URL 4")
url5 = gr.Textbox(label="URL 5")
url6 = gr.Textbox(label="URL 6")
url7 = gr.Textbox(label="URL 7")
url8 = gr.Textbox(label="URL 8")
url9 = gr.Textbox(label="URL 9")
url10 = gr.Textbox(label="URL 10")
scrape_interval = gr.Slider(minimum=1, maximum=60, value=5, step=1, label="Scrape Interval (minutes)")
content_type = gr.Radio(choices=["text", "media", "both"], value="text", label="Content Type")
start_button = gr.Button("Start Scraping")
csv_output = gr.Textbox(label="CSV Output", interactive=False)
with gr.Column():
chat_history = gr.Chatbot(label="Chat History")
response_box = gr.Textbox(label="Response")
start_button.click(start_scraping, inputs=[storage_location, url1, url2, url3, url4, url5, url6, url7, url8, url9, url10, scrape_interval, content_type], outputs=csv_output)
message.submit(chat_interface, inputs=[message, system_message, max_tokens, temperature, top_p, storage_location, url1, url2, url3, url4, url5, url6, url7, url8, url9, url10, scrape_interval, content_type], outputs=[chat_history, response_box])
if __name__ == "__main__":
demo.launch()