CEEMEESEEK / app.py
acecalisto3's picture
Update app.py
d507c63 verified
raw
history blame
47.9 kB
import os
import time
import hashlib
import logging
import datetime
import csv
import threading
import re
import unittest
from urllib.parse import urlparse
import spaces
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import (
TimeoutException,
NoSuchElementException,
StaleElementReferenceException,
)
from webdriver_manager.chrome import ChromeDriverManager
from transformers import AutoTokenizer, OpenLlamaForCausalLM, pipeline
import gradio as gr
import xml.etree.ElementTree as ET
import torch
import mysql.connector
from mysql.connector import errorcode, pooling
import nltk
import importlib
st.title("CEEMEESEEK with Model Selection")
model_option = st.selectbox("Select a Model", ["Falcon", "Flan-T5", "Other Model"]) # Add your model names
if model_option == "Falcon":
model_module = importlib.import_module("model_falcon") # Assuming you create model_falcon.py
model = model_module.load_falcon_model()
elif model_option == "Flan-T5":
model_module = importlib.import_module("model_flan_t5")
model = model_module.load_flan_t5_model()
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
if not HUGGINGFACE_TOKEN:
raise ValueError("HUGGINGFACE_TOKEN is not set in the environment variables.")
add_to_git_credential=True
login(token=HUGGINGFACE_TOKEN, add_to_git_credential=True)
# Load environment variables from .env file
load_dotenv()
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# Define constants
DEFAULT_FILE_PATH = "scraped_data"
PURPOSE = (
"You go to Culvers sites, you continuously seek changes on them since your last observation. "
"Anything new that gets logged and dumped into csv, stored in your log folder at user/app/scraped_data."
)
# Global variables for task management
HISTORY = []
CURRENT_TASK = None
STOP_THREADS = False # Flag to stop scraping threads
# Database Pooling Configuration
DB_POOL_NAME = "mypool"
DB_POOL_SIZE = 5 # Adjust based on expected load
try:
dbconfig = {
"host": os.getenv("DB_HOST"),
"user": os.getenv("DB_USER"),
"password": os.getenv("DB_PASSWORD"),
"database": os.getenv("DB_NAME"),
}
connection_pool = mysql.connector.pooling.MySQLConnectionPool(
pool_name=DB_POOL_NAME,
pool_size=DB_POOL_SIZE,
pool_reset_session=True,
**dbconfig
)
logging.info("Database connection pool created successfully.")
except mysql.connector.Error as err:
logging.warning(f"Database connection pool creation failed: {err}")
connection_pool = None # Will use CSV as fallback
# Function to get a database connection from the pool
def get_db_connection():
"""
Retrieves a connection from the pool. Returns None if pool is not available.
"""
if connection_pool:
try:
connection = connection_pool.get_connection()
if connection.is_connected():
return connection
except mysql.connector.Error as err:
logging.error(f"Error getting connection from pool: {err}")
return None
# Initialize Database: Create tables and indexes
def initialize_database():
"""
Initializes the database by creating necessary tables and indexes if they do not exist.
"""
connection = get_db_connection()
if connection is None:
logging.info("Database initialization skipped. Using CSV storage.")
return
cursor = connection.cursor()
try:
# Create table for scraped data
create_scraped_data_table = """
CREATE TABLE IF NOT EXISTS scraped_data (
id INT AUTO_INCREMENT PRIMARY KEY,
url VARCHAR(255) NOT NULL,
content_hash VARCHAR(64) NOT NULL,
change_detected DATETIME NOT NULL
)
"""
cursor.execute(create_scraped_data_table)
logging.info("Table 'scraped_data' is ready.")
# Create indexes for performance
create_index_url = "CREATE INDEX IF NOT EXISTS idx_url ON scraped_data(url)"
create_index_change = "CREATE INDEX IF NOT EXISTS idx_change_detected ON scraped_data(change_detected)"
cursor.execute(create_index_url)
cursor.execute(create_index_change)
logging.info("Indexes on 'url' and 'change_detected' columns created.")
# Create table for action logs
create_action_logs_table = """
CREATE TABLE IF NOT EXISTS action_logs (
id INT AUTO_INCREMENT PRIMARY KEY,
action VARCHAR(255) NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
"""
cursor.execute(create_action_logs_table)
logging.info("Table 'action_logs' is ready.")
except mysql.connector.Error as err:
logging.error(f"Error initializing database: {err}")
finally:
cursor.close()
connection.close()
logging.info("Database initialization complete.")
# Function to create WebDriver
def create_driver(options: Options) -> webdriver.Chrome:
"""
Initializes and returns a Selenium Chrome WebDriver instance.
"""
try:
driver = webdriver.Chrome(
service=Service(ChromeDriverManager().install()), options=options
)
logging.info("ChromeDriver initialized successfully.")
return driver
except Exception as exception:
logging.error(f"Error initializing ChromeDriver: {exception}")
return None
# Function to log changes to CSV
def log_to_csv(storage_location: str, url: str, content_hash: str, change_detected: str):
"""
Logs the change to a CSV file in the storage_location.
"""
try:
os.makedirs(storage_location, exist_ok=True)
csv_file_path = os.path.join(storage_location, f"{urlparse(url).hostname}_changes.csv")
file_exists = os.path.isfile(csv_file_path)
with open(csv_file_path, "a", newline="", encoding="utf-8") as csvfile:
fieldnames = ["date", "time", "url", "content_hash", "change"]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
writer.writerow(
{
"date": change_detected.split()[0],
"time": change_detected.split()[1],
"url": url,
"content_hash": content_hash,
"change": "Content changed",
}
)
logging.info(f"Change detected at {url} on {change_detected} and logged to CSV.")
except Exception as e:
logging.error(f"Error logging data to CSV: {e}")
# Function to get initial observation
def get_initial_observation(
driver: webdriver.Chrome, url: str, content_type: str, selector: str = None
) -> str:
"""
Retrieves the initial content from the URL and returns its MD5 hash.
"""
try:
driver.get(url)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
initial_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
)
initial_content = [element.get_attribute("src") for element in elements]
except TimeoutException:
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
initial_content = []
else:
elements = driver.find_elements(By.TAG_NAME, "img")
initial_content = [element.get_attribute("src") for element in elements]
else:
initial_content = driver.page_source
initial_hash = hashlib.md5(str(initial_content).encode("utf-8")).hexdigest()
logging.info(f"Initial hash for {url}: {initial_hash}")
return initial_hash
except Exception as exception:
logging.error(f"Error accessing {url}: {exception}")
return None
# Function to monitor URLs for changes
def monitor_urls(
storage_location: str,
urls: list,
scrape_interval: int,
content_type: str,
selector: str = None,
progress: gr.Progress = None
):
"""
Monitors the specified URLs for changes and logs any detected changes to the database or CSV.
"""
global HISTORY, STOP_THREADS
previous_hashes = {url: "" for url in urls}
options = Options()
options.add_argument("--headless")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
driver = create_driver(options)
if driver is None:
logging.error("WebDriver could not be initialized. Exiting monitor.")
return
try:
while not STOP_THREADS:
for url in urls:
if STOP_THREADS:
break
try:
driver.get(url)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
current_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
)
current_content = [element.get_attribute("src") for element in elements]
except TimeoutException:
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
current_content = []
else:
elements = driver.find_elements(By.TAG_NAME, "img")
current_content = [element.get_attribute("src") for element in elements]
else:
current_content = driver.page_source
current_hash = hashlib.md5(str(current_content).encode("utf-8")).hexdigest()
if current_hash != previous_hashes[url]:
previous_hashes[url] = current_hash
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
HISTORY.append(f"Change detected at {url} on {date_time_str}")
# Attempt to log to database
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor()
insert_query = """
INSERT INTO scraped_data (url, content_hash, change_detected)
VALUES (%s, %s, %s)
"""
cursor.execute(insert_query, (url, current_hash, date_time_str))
connection.commit()
logging.info(f"Change detected at {url} on {date_time_str} and logged to database.")
except mysql.connector.Error as err:
logging.error(f"Error inserting data into database: {err}")
# Fallback to CSV
log_to_csv(storage_location, url, current_hash, date_time_str)
finally:
cursor.close()
connection.close()
else:
# Fallback to CSV
log_to_csv(storage_location, url, current_hash, date_time_str)
# Update progress
if progress:
progress(1)
except (
NoSuchElementException,
StaleElementReferenceException,
TimeoutException,
Exception,
) as e:
logging.error(f"Error accessing {url}: {e}")
if progress:
progress(1)
time.sleep(scrape_interval * 60) # Wait for the next scrape interval
finally:
driver.quit()
logging.info("ChromeDriver session ended.")
# Function to start scraping
def start_scraping(
storage_location: str,
urls: str,
scrape_interval: int,
content_type: str,
selector: str = None,
progress: gr.Progress = None
) -> str:
"""
Starts the scraping process in a separate thread with progress indication.
"""
global CURRENT_TASK, HISTORY, STOP_THREADS
if STOP_THREADS:
STOP_THREADS = False # Reset the flag if previously stopped
url_list = [url.strip() for url in urls.split(",") if url.strip()]
CURRENT_TASK = f"Monitoring URLs: {', '.join(url_list)}"
HISTORY.append(f"Task started: {CURRENT_TASK}")
logging.info(f"Task started: {CURRENT_TASK}")
# Initialize database tables
initialize_database()
# Log initial observations
def log_initial_observations():
options = Options()
options.add_argument("--headless")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
driver = create_driver(options)
if driver is None:
return
for url in url_list:
if STOP_THREADS:
break
try:
initial_hash = get_initial_observation(driver, url, content_type, selector)
if initial_hash:
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
HISTORY.append(f"Initial observation at {url}: {initial_hash}")
# Attempt to log to database
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor()
insert_query = """
INSERT INTO scraped_data (url, content_hash, change_detected)
VALUES (%s, %s, %s)
"""
cursor.execute(insert_query, (url, initial_hash, date_time_str))
connection.commit()
logging.info(f"Initial observation logged for {url} in database.")
except mysql.connector.Error as err:
logging.error(f"Error inserting initial observation into database: {err}")
# Fallback to CSV
log_to_csv(storage_location, url, initial_hash, date_time_str)
finally:
cursor.close()
connection.close()
else:
# Fallback to CSV
log_to_csv(storage_location, url, initial_hash, date_time_str)
except Exception as e:
HISTORY.append(f"Error accessing {url}: {e}")
logging.error(f"Error accessing {url}: {e}")
driver.quit()
# Start logging initial observations
initial_thread = threading.Thread(target=log_initial_observations, daemon=True)
initial_thread.start()
# Start the monitoring thread with progress
monitor_thread = threading.Thread(
target=monitor_urls,
args=(storage_location, url_list, scrape_interval, content_type, selector, progress),
daemon=True,
)
monitor_thread.start()
logging.info("Started scraping thread.")
return f"Started scraping {', '.join(url_list)} every {scrape_interval} minutes."
# Function to stop scraping
def stop_scraping() -> str:
"""
Stops all ongoing scraping threads.
"""
global STOP_THREADS
STOP_THREADS = True
HISTORY.append("Scraping stopped by user.")
logging.info("Scraping stop signal sent.")
return "Scraping has been stopped."
# Function to display CSV content from MySQL or CSV
def display_csv(storage_location: str, url: str) -> str:
"""
Fetches and returns the scraped data for a given URL from the MySQL database or CSV.
"""
try:
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC"
cursor.execute(query, (url,))
results = cursor.fetchall()
if not results:
return "No data available for the selected URL."
df = pd.DataFrame(results)
cursor.close()
connection.close()
return df.to_string(index=False)
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Fetching data from CSV.")
# Fallback to CSV
hostname = urlparse(url).hostname
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
df = pd.read_csv(csv_path)
return df.to_string(index=False)
else:
return "No data available."
except Exception as e:
logging.error(f"Error fetching data for {url}: {e}")
return f"Error fetching data for {url}: {e}"
# Function to generate RSS feed from MySQL or CSV data
def generate_rss_feed(storage_location: str, url: str) -> str:
"""
Generates an RSS feed for the latest changes detected on a given URL from the MySQL database or CSV.
"""
try:
connection = get_db_connection()
rss_feed = ""
if connection:
try:
cursor = connection.cursor(dictionary=True)
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC LIMIT 10"
cursor.execute(query, (url,))
results = cursor.fetchall()
if not results:
return "No changes detected to include in RSS feed."
# Create the root RSS element
rss = ET.Element("rss", version="2.0")
channel = ET.SubElement(rss, "channel")
# Add channel elements
title = ET.SubElement(channel, "title")
title.text = f"RSS Feed for {urlparse(url).hostname}"
link = ET.SubElement(channel, "link")
link.text = url
description = ET.SubElement(channel, "description")
description.text = "Recent changes detected on the website."
# Add items to the feed
for row in results:
item = ET.SubElement(channel, "item")
item_title = ET.SubElement(item, "title")
item_title.text = f"Change detected at {row['url']}"
item_link = ET.SubElement(item, "link")
item_link.text = row["url"]
item_description = ET.SubElement(item, "description")
item_description.text = f"Content changed on {row['change_detected']}"
pub_date = ET.SubElement(item, "pubDate")
pub_date.text = datetime.datetime.strptime(
str(row['change_detected']), "%Y-%m-%d %H:%M:%S"
).strftime("%a, %d %b %Y %H:%M:%S +0000")
# Generate the XML string
rss_feed = ET.tostring(rss, encoding="utf-8", method="xml").decode("utf-8")
cursor.close()
connection.close()
return rss_feed
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Generating RSS feed from CSV.")
# Fallback to CSV
hostname = urlparse(url).hostname
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
df = pd.read_csv(csv_path).tail(10)
if df.empty:
return "No changes detected to include in RSS feed."
# Create the root RSS element
rss = ET.Element("rss", version="2.0")
channel = ET.SubElement(rss, "channel")
# Add channel elements
title = ET.SubElement(channel, "title")
title.text = f"RSS Feed for {hostname}"
link = ET.SubElement(channel, "link")
link.text = url
description = ET.SubElement(channel, "description")
description.text = "Recent changes detected on the website."
# Add items to the feed
for _, row in df.iterrows():
item = ET.SubElement(channel, "item")
item_title = ET.SubElement(item, "title")
item_title.text = f"Change detected at {row['url']}"
item_link = ET.SubElement(item, "link")
item_link.text = row["url"]
item_description = ET.SubElement(item, "description")
item_description.text = f"Content changed on {row['date']} at {row['time']}"
pub_date = ET.SubElement(item, "pubDate")
pub_date.text = datetime.datetime.strptime(
f"{row['date']} {row['time']}", "%Y-%m-%d %H:%M:%S"
).strftime("%a, %d %b %Y %H:%M:%S +0000")
# Generate the XML string
rss_feed = ET.tostring(rss, encoding="utf-8", method="xml").decode("utf-8")
return rss_feed
else:
return "No data available."
except Exception as e:
logging.error(f"Error generating RSS feed for {url}: {e}")
return f"Error generating RSS feed for {url}: {e}"
# Function to parse user commands using spaCy
def parse_command(message: str) -> tuple:
"""
Parses the user message using spaCy to identify if it contains a command.
Returns the command and its parameters if found, else (None, None).
"""
doc = nlp(message.lower())
command = None
params = {}
# Define command patterns
if "filter" in message.lower():
# Example: "Filter apples, oranges in column Description"
match = re.search(r"filter\s+([\w\s,]+)\s+in\s+column\s+(\w+)", message, re.IGNORECASE)
if match:
words = [word.strip() for word in match.group(1).split(",")]
column = match.group(2)
command = "filter"
params = {"words": words, "column": column}
elif "sort" in message.lower():
# Example: "Sort Price ascending"
match = re.search(r"sort\s+(\w+)\s+(ascending|descending)", message, re.IGNORECASE)
if match:
column = match.group(1)
order = match.group(2)
command = "sort"
params = {"column": column, "order": order}
elif "export to csv as" in message.lower():
# Example: "Export to CSV as filtered_data.csv"
match = re.search(r"export\s+to\s+csv\s+as\s+([\w\-]+\.csv)", message, re.IGNORECASE)
if match:
filename = match.group(1)
command = "export"
params = {"filename": filename}
elif "log action" in message.lower():
# Example: "Log action Filtered data for specific fruits"
match = re.search(r"log\s+action\s+(.+)", message, re.IGNORECASE)
if match:
action = match.group(1)
command = "log"
params = {"action": action}
return command, params
# Function to execute parsed commands
def execute_command(command: str, params: dict) -> str:
"""
Executes the corresponding function based on the command and parameters.
"""
if command == "filter":
words = params["words"]
column = params["column"]
return filter_data(column, words)
elif command == "sort":
column = params["column"]
order = params["order"]
return sort_data(column, order)
elif command == "export":
filename = params["filename"]
return export_csv(filename)
elif command == "log":
action = params["action"]
return log_action(action)
else:
return "Unknown command."
# Data Manipulation Functions
def filter_data(column: str, words: list) -> str:
"""
Filters the scraped data to include only rows where the specified column contains the given words.
Saves the filtered data to a new CSV file.
"""
try:
storage_location = DEFAULT_FILE_PATH
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
# Fetch all data
query = "SELECT * FROM scraped_data"
cursor.execute(query)
results = cursor.fetchall()
if not results:
return "No data available to filter."
df = pd.DataFrame(results)
# Create a regex pattern to match any of the words
pattern = '|'.join(words)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
filtered_df = df[df[column].astype(str).str.contains(pattern, case=False, na=False)]
if filtered_df.empty:
return f"No records found with words {words} in column '{column}'."
# Save the filtered data to a new CSV
timestamp = int(time.time())
filtered_csv = os.path.join(storage_location, f"filtered_data_{timestamp}.csv")
filtered_df.to_csv(filtered_csv, index=False)
logging.info(f"Data filtered on column '{column}' for words {words}.")
return f"Data filtered and saved to {filtered_csv}."
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Filtering data from CSV.")
# Fallback to CSV
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
if not csv_files:
return "No CSV files found to filter."
# Assume the latest CSV is the target
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
df = pd.read_csv(latest_csv)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
filtered_df = df[df[column].astype(str).str.contains('|'.join(words), case=False, na=False)]
if filtered_df.empty:
return f"No records found with words {words} in column '{column}'."
# Save the filtered data to a new CSV
timestamp = int(time.time())
filtered_csv = latest_csv.replace(".csv", f"_filtered_{timestamp}.csv")
filtered_df.to_csv(filtered_csv, index=False)
logging.info(f"Data filtered on column '{column}' for words {words}.")
return f"Data filtered and saved to {filtered_csv}."
except Exception as e:
logging.error(f"Error filtering data: {e}")
return f"Error filtering data: {e}"
def sort_data(column: str, order: str) -> str:
"""
Sorts the scraped data based on the specified column and order.
Saves the sorted data to a new CSV file.
"""
try:
storage_location = DEFAULT_FILE_PATH
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
# Fetch all data
query = "SELECT * FROM scraped_data"
cursor.execute(query)
results = cursor.fetchall()
if not results:
return "No data available to sort."
df = pd.DataFrame(results)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
ascending = True if order.lower() == "ascending" else False
sorted_df = df.sort_values(by=column, ascending=ascending)
# Save the sorted data to a new CSV
timestamp = int(time.time())
sorted_csv = os.path.join(storage_location, f"sorted_data_{column}_{order.lower()}_{timestamp}.csv")
sorted_df.to_csv(sorted_csv, index=False)
logging.info(f"Data sorted on column '{column}' in {order} order.")
return f"Data sorted and saved to {sorted_csv}."
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Sorting data from CSV.")
# Fallback to CSV
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
if not csv_files:
return "No CSV files found to sort."
# Assume the latest CSV is the target
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
df = pd.read_csv(latest_csv)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
ascending = True if order.lower() == "ascending" else False
sorted_df = df.sort_values(by=column, ascending=ascending)
# Save the sorted data to a new CSV
timestamp = int(time.time())
sorted_csv = latest_csv.replace(".csv", f"_sorted_{order.lower()}_{timestamp}.csv")
sorted_df.to_csv(sorted_csv, index=False)
logging.info(f"Data sorted on column '{column}' in {order} order.")
return f"Data sorted and saved to {sorted_csv}."
except Exception as e:
logging.error(f"Error sorting data: {e}")
return f"Error sorting data: {e}"
def export_csv(filename: str) -> str:
"""
Exports the latest scraped data to a specified CSV filename.
"""
try:
storage_location = DEFAULT_FILE_PATH
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
# Fetch all data
query = "SELECT * FROM scraped_data"
cursor.execute(query)
results = cursor.fetchall()
if not results:
return "No data available to export."
df = pd.DataFrame(results)
export_path = os.path.join(storage_location, filename)
df.to_csv(export_path, index=False)
logging.info(f"Data exported to {export_path}.")
return f"Data exported to {export_path}."
except mysql.connector.Error as err:
logging.error(f"Error exporting data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Exporting data from CSV.")
# Fallback to CSV
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
if not csv_files:
return "No CSV files found to export."
# Assume the latest CSV is the target
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
df = pd.read_csv(latest_csv)
export_path = os.path.join(storage_location, filename)
df.to_csv(export_path, index=False)
logging.info(f"Data exported to {export_path}.")
return f"Data exported to {export_path}."
except Exception as e:
logging.error(f"Error exporting CSV: {e}")
return f"Error exporting CSV: {e}"
def log_action(action: str) -> str:
"""
Logs a custom action message to the MySQL database or CSV.
"""
try:
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor()
insert_query = """
INSERT INTO action_logs (action)
VALUES (%s)
"""
cursor.execute(insert_query, (action,))
connection.commit()
logging.info(f"Action logged in database: {action}")
cursor.close()
connection.close()
return f"Action logged: {action}"
except mysql.connector.Error as err:
logging.error(f"Error logging action to database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Logging action to CSV.")
# Fallback to CSV
storage_location = DEFAULT_FILE_PATH
try:
os.makedirs(storage_location, exist_ok=True)
csv_file_path = os.path.join(storage_location, "action_logs.csv")
file_exists = os.path.isfile(csv_file_path)
with open(csv_file_path, "a", newline="", encoding="utf-8") as csvfile:
fieldnames = ["timestamp", "action"]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
writer.writerow(
{
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"action": action,
}
)
logging.info(f"Action logged to CSV: {action}")
return f"Action logged: {action}"
except Exception as e:
logging.error(f"Error logging action to CSV: {e}")
return f"Error logging action: {e}"
except Exception as e:
logging.error(f"Error logging action: {e}")
return f"Error logging action: {e}"
# Function to get the latest CSV file based on modification time
def get_latest_csv() -> str:
"""
Retrieves the latest CSV file from the storage directory based on modification time.
"""
try:
storage_location = "/home/users/app/scraped_data"
csv_files = [f for f in os.listdir(storage_location) if f.endswith(".csv")]
if not csv_files:
return None
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
return latest_csv
except Exception as e:
logging.error(f"Error retrieving latest CSV: {e}")
return None
def respond(
message: str,
history: list,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
) -> str:
"""
Generates a response using OpenLlamaForCausalLM.
"""
try:
# Check if the message contains a command
command, params = parse_command(message)
if command:
# Execute the corresponding function
response = execute_command(command, params)
else:
# Generate a regular response using OpenLlama
prompt = (
f"System: {system_message}\n"
f"History: {history}\n"
f"User: {message}\n"
f"Assistant:"
)
response = openllama_pipeline(
prompt,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
)[0]["generated_text"]
# Extract the assistant's reply
response = response.split("Assistant:")[-1].strip()
return response
except Exception as e:
logging.error(f"Error generating response: {e}")
return "Error generating response."
# Define the Gradio interface
def create_interface() -> gr.Blocks():
"""
Defines and returns the Gradio interface for the application.
"""
with gr.Blocks() as demo:
gr.Markdown("# All-in-One Scraper, Database, and RSS Feeder")
with gr.Row():
with gr.Column():
# Scraping Controls
storage_location = gr.Textbox(
value=DEFAULT_FILE_PATH, label="Storage Location"
)
urls = gr.Textbox(
label="URLs (comma separated)",
placeholder="https://example.com, https://anotherexample.com",
)
scrape_interval = gr.Slider(
minimum=1,
maximum=60,
value=5,
step=1,
label="Scrape Interval (minutes)",
)
content_type = gr.Radio(
choices=["text", "media", "both"],
value="text",
label="Content Type",
)
selector = gr.Textbox(
label="CSS Selector for Media (Optional)",
placeholder="e.g., img.main-image",
)
start_button = gr.Button("Start Scraping")
stop_button = gr.Button("Stop Scraping")
status_output = gr.Textbox(
label="Status Output", interactive=False, lines=2
)
with gr.Column():
# Chat Interface
chat_history = gr.Chatbot(label="Chat History")
with gr.Row():
message = gr.Textbox(label="Message", placeholder="Type your message here...")
system_message = gr.Textbox(
value="You are a helpful assistant.", label="System message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens",
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
)
response_box = gr.Textbox(label="Response", interactive=False, lines=2)
with gr.Row():
with gr.Column():
# CSV Display Controls
selected_url_csv = gr.Textbox(
label="Select URL for CSV Content",
placeholder="https://example.com",
)
csv_button = gr.Button("Display CSV Content")
csv_content_output = gr.Textbox(
label="CSV Content Output", interactive=False, lines=10
)
with gr.Column():
# RSS Feed Generation Controls
selected_url_rss = gr.Textbox(
label="Select URL for RSS Feed",
placeholder="https://example.com",
)
rss_button = gr.Button("Generate RSS Feed")
rss_output = gr.Textbox(
label="RSS Feed Output", interactive=False, lines=20
)
# Historical Data View
with gr.Row():
historical_view_url = gr.Textbox(
label="Select URL for Historical Data",
placeholder="https://example.com",
)
historical_button = gr.Button("View Historical Data")
historical_output = gr.Dataframe(
headers=["ID", "URL", "Content Hash", "Change Detected"],
label="Historical Data",
interactive=False
)
# Connect buttons to their respective functions
start_button.click(
fn=start_scraping,
inputs=[
storage_location,
urls,
scrape_interval,
content_type,
selector,
],
outputs=status_output,
)
stop_button.click(fn=stop_scraping, outputs=status_output)
csv_button.click(
fn=display_csv,
inputs=[storage_location, selected_url_csv],
outputs=csv_content_output,
)
rss_button.click(
fn=generate_rss_feed,
inputs=[storage_location, selected_url_rss],
outputs=rss_output,
)
historical_button.click(
fn=display_historical_data,
inputs=[storage_location, historical_view_url],
outputs=historical_output,
)
# Connect message submission to the chat interface
def update_chat(message_input, history, system_msg, max_toks, temp, top_p_val):
if not message_input.strip():
return history, "Please enter a message."
response = respond(
message_input,
history,
system_msg,
max_toks,
temp,
top_p_val,
)
history.append((message_input, response))
return history, response
message.submit(
update_chat,
inputs=[
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
],
outputs=[chat_history, response_box],
)
return demo
# Function to display historical data
def display_historical_data(storage_location: str, url: str):
"""
Retrieves and displays historical scraping data for a given URL.
"""
try:
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC"
cursor.execute(query, (url,))
results = cursor.fetchall()
if not results:
return pd.DataFrame()
df = pd.DataFrame(results)
cursor.close()
connection.close()
return df
except mysql.connector.Error as err:
logging.error(f"Error fetching historical data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Fetching historical data from CSV.")
# Fallback to CSV
hostname = urlparse(url).hostname
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
df = pd.read_csv(csv_path)
return df
else:
return pd.DataFrame()
except Exception as e:
logging.error(f"Error fetching historical data for {url}: {e}")
return pd.DataFrame()
def load_model():
"""
Loads the openLlama model and tokenizer once and returns the pipeline.
"""
try:
model_name = "openlm-research/open_llama_3b_v2"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, legacy=False)
model = AutoModelForCausalLM.from_pretrained(model_name)
# This should be inside the try block
max_supported_length = 2048
openllama_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
truncation=True,
max_length=max_supported_length,
temperature=0.7,
top_p=0.95,
device=0 if torch.cuda.is_available() else -1,
)
logging.info("Model loaded successfully.")
return openllama_pipeline # Return the pipeline
except Exception as e:
logging.error(f"Error loading google/flan-t5-xl model: {e}")
return None
# Load the model once at the start
chat_pipeline = load_model()
# Automated Testing using unittest
class TestApp(unittest.TestCase):
def test_parse_command_filter(self):
command = "Filter apples, oranges in column Description"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "filter")
self.assertListEqual(parsed_command[1]["words"], ["apples", "oranges"])
self.assertEqual(parsed_command[1]["column"], "Description")
def test_parse_command_sort(self):
command = "Sort Price ascending"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "sort")
self.assertEqual(parsed_command[1]["column"], "Price")
self.assertEqual(parsed_command[1]["order"], "ascending")
def test_parse_command_export(self):
command = "Export to CSV as filtered_data.csv"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "export")
self.assertEqual(parsed_command[1]["filename"], "filtered_data.csv")
def test_parse_command_log(self):
command = "Log action Filtered data for specific fruits"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "log")
self.assertEqual(parsed_command[1]["action"], "Filtered data for specific fruits")
def test_database_connection(self):
connection = get_db_connection()
# Connection may be None if not configured; adjust the test accordingly
if connection:
self.assertTrue(connection.is_connected())
connection.close()
else:
self.assertIsNone(connection)
def main():
# Initialize and run the application
logging.info("Starting the application...")
model = load_model()
if model:
logging.info("Application started successfully.")
print("Main function executed")
print("Creating interface...")
demo = create_interface()
print("Launching interface...")
demo.launch(server_name="0.0.0.0", server_port=7860)
else:
logging.error("Failed to start the application.")
# Main execution
if __name__ == "__main__":
# Initialize database
initialize_database()
# Create and launch Gradio interface
demo = create_interface()
demo.launch()
# Run automated tests
unittest.main(argv=[''], exit=False)