acecalisto3 commited on
Commit
43a275b
·
verified ·
1 Parent(s): 9de696e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -13
app.py CHANGED
@@ -34,17 +34,19 @@ from huggingface_hub import login
34
  # Load model directly
35
  from transformers import AutoTokenizer, AutoModelForMaskedLM
36
 
37
- tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
38
  model = AutoModelForMaskedLM.from_pretrained("sentence-transformers/all-mpnet-base-v2")
39
 
40
- def parse_command(message):
41
- candidate_labels = ["filter", "sort", "export", "log"]
42
- result = classifier(message, candidate_labels)
43
- return result['labels'][0] if result['scores'][0] > 0.5 else None
 
 
 
 
 
44
 
45
- # Usage
46
- command = parse_command("Filter apples, oranges in column Description")
47
- print(command) # Output: 'filter'
48
 
49
  HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
50
  if not HUGGINGFACE_TOKEN:
@@ -1057,9 +1059,7 @@ def create_interface() -> gr.Blocks():
1057
  interactive=False
1058
  )
1059
 
1060
- # Progress Indicator
1061
- with gr.Row():
1062
- progress = gr.Progress()
1063
 
1064
  # Connect buttons to their respective functions
1065
  start_button.click(
@@ -1070,7 +1070,7 @@ def create_interface() -> gr.Blocks():
1070
  scrape_interval,
1071
  content_type,
1072
  selector,
1073
- progress,
1074
  ],
1075
  outputs=status_output,
1076
  )
@@ -1249,4 +1249,4 @@ if __name__ == "__main__":
1249
  demo.launch()
1250
 
1251
  # Run automated tests
1252
- unittest.main(argv=[''], exit=False)
 
34
  # Load model directly
35
  from transformers import AutoTokenizer, AutoModelForMaskedLM
36
 
37
+ tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2", clean_up_tokenization_spaces=True)
38
  model = AutoModelForMaskedLM.from_pretrained("sentence-transformers/all-mpnet-base-v2")
39
 
40
+ # Define classifier for zero-shot classification
41
+ classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
42
+
43
+ # Define nlp using a simple tokenizer
44
+ from transformers import AutoTokenizer
45
+ nlp = AutoTokenizer.from_pretrained("bert-base-uncased")
46
+
47
+
48
+
49
 
 
 
 
50
 
51
  HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
52
  if not HUGGINGFACE_TOKEN:
 
1059
  interactive=False
1060
  )
1061
 
1062
+
 
 
1063
 
1064
  # Connect buttons to their respective functions
1065
  start_button.click(
 
1070
  scrape_interval,
1071
  content_type,
1072
  selector,
1073
+
1074
  ],
1075
  outputs=status_output,
1076
  )
 
1249
  demo.launch()
1250
 
1251
  # Run automated tests
1252
+ unittest.main(argv=[''], exit=False)