Spaces:
Runtime error
Runtime error
Commit
·
ac4d529
1
Parent(s):
7321c1c
fix
Browse files
app.py
CHANGED
@@ -1,4 +1,41 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
# Dictionary to store model loading functions
|
4 |
model_loaders = {
|
@@ -12,8 +49,1146 @@ model_option = st.selectbox("Select a Model", list(model_loaders.keys()))
|
|
12 |
# Load the selected model
|
13 |
model = model_loaders[model_option]()
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def load_model(model_name: str):
|
19 |
"""
|
@@ -40,4 +1215,65 @@ def load_model(model_name: str):
|
|
40 |
logging.error(f"Error loading {model_name} model: {e}")
|
41 |
return None
|
42 |
|
43 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import hashlib
|
4 |
+
import logging
|
5 |
+
import streamlit as st
|
6 |
+
import datetime
|
7 |
+
import csv
|
8 |
+
import threading
|
9 |
+
import re
|
10 |
+
import unittest
|
11 |
+
from urllib.parse import urlparse
|
12 |
+
import spaces
|
13 |
+
|
14 |
+
import pandas as pd
|
15 |
+
from selenium import webdriver
|
16 |
+
from selenium.webdriver.chrome.service import Service
|
17 |
+
from selenium.webdriver.chrome.options import Options
|
18 |
+
from selenium.webdriver.common.by import By
|
19 |
+
from selenium.webdriver.support.ui import WebDriverWait
|
20 |
+
from selenium.webdriver.support import expected_conditions as EC
|
21 |
+
from selenium.common.exceptions import (
|
22 |
+
TimeoutException,
|
23 |
+
|
24 |
+
NoSuchElementException,
|
25 |
+
StaleElementReferenceException,
|
26 |
+
)
|
27 |
+
from webdriver_manager.chrome import ChromeDriverManager
|
28 |
+
|
29 |
+
from transformers import AutoTokenizer, OpenLlamaForCausalLM, pipeline
|
30 |
+
import gradio as gr
|
31 |
+
import xml.etree.ElementTree as ET
|
32 |
+
import torch
|
33 |
+
import mysql.connector
|
34 |
+
from mysql.connector import errorcode, pooling
|
35 |
+
import nltk
|
36 |
+
import importlib
|
37 |
+
|
38 |
+
st.title("CEEMEESEEK with Model Selection")
|
39 |
|
40 |
# Dictionary to store model loading functions
|
41 |
model_loaders = {
|
|
|
49 |
# Load the selected model
|
50 |
model = model_loaders[model_option]()
|
51 |
|
52 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
53 |
+
|
54 |
+
if not HUGGINGFACE_TOKEN:
|
55 |
+
raise ValueError("HUGGINGFACE_TOKEN is not set in the environment variables.")
|
56 |
+
add_to_git_credential=True
|
57 |
+
login(token=HUGGINGFACE_TOKEN, add_to_git_credential=True)
|
58 |
+
|
59 |
+
|
60 |
+
# Load environment variables from .env file
|
61 |
+
load_dotenv()
|
62 |
+
|
63 |
+
# Configure logging
|
64 |
+
logging.basicConfig(
|
65 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
66 |
+
)
|
67 |
+
|
68 |
+
# Define constants
|
69 |
+
DEFAULT_FILE_PATH = "scraped_data"
|
70 |
+
PURPOSE = (
|
71 |
+
"You go to Culvers sites, you continuously seek changes on them since your last observation. "
|
72 |
+
"Anything new that gets logged and dumped into csv, stored in your log folder at user/app/scraped_data."
|
73 |
+
)
|
74 |
+
|
75 |
+
# Global variables for task management
|
76 |
+
HISTORY = []
|
77 |
+
CURRENT_TASK = None
|
78 |
+
STOP_THREADS = False # Flag to stop scraping threads
|
79 |
+
|
80 |
+
# Database Pooling Configuration
|
81 |
+
DB_POOL_NAME = "mypool"
|
82 |
+
DB_POOL_SIZE = 5 # Adjust based on expected load
|
83 |
+
|
84 |
+
try:
|
85 |
+
dbconfig = {
|
86 |
+
"host": os.getenv("DB_HOST"),
|
87 |
+
"user": os.getenv("DB_USER"),
|
88 |
+
"password": os.getenv("DB_PASSWORD"),
|
89 |
+
"database": os.getenv("DB_NAME"),
|
90 |
+
}
|
91 |
+
connection_pool = mysql.connector.pooling.MySQLConnectionPool(
|
92 |
+
pool_name=DB_POOL_NAME,
|
93 |
+
pool_size=DB_POOL_SIZE,
|
94 |
+
pool_reset_session=True,
|
95 |
+
**dbconfig
|
96 |
+
)
|
97 |
+
logging.info("Database connection pool created successfully.")
|
98 |
+
except mysql.connector.Error as err:
|
99 |
+
logging.warning(f"Database connection pool creation failed: {err}")
|
100 |
+
connection_pool = None # Will use CSV as fallback
|
101 |
+
|
102 |
+
# Function to get a database connection from the pool
|
103 |
+
def get_db_connection():
|
104 |
+
"""
|
105 |
+
Retrieves a connection from the pool. Returns None if pool is not available.
|
106 |
+
"""
|
107 |
+
if connection_pool:
|
108 |
+
try:
|
109 |
+
connection = connection_pool.get_connection()
|
110 |
+
if connection.is_connected():
|
111 |
+
return connection
|
112 |
+
except mysql.connector.Error as err:
|
113 |
+
logging.error(f"Error getting connection from pool: {err}")
|
114 |
+
return None
|
115 |
+
|
116 |
+
# Initialize Database: Create tables and indexes
|
117 |
+
def initialize_database():
|
118 |
+
"""
|
119 |
+
Initializes the database by creating necessary tables and indexes if they do not exist.
|
120 |
+
"""
|
121 |
+
connection = get_db_connection()
|
122 |
+
if connection is None:
|
123 |
+
logging.info("Database initialization skipped. Using CSV storage.")
|
124 |
+
return
|
125 |
+
|
126 |
+
cursor = connection.cursor()
|
127 |
+
try:
|
128 |
+
# Create table for scraped data
|
129 |
+
create_scraped_data_table = """
|
130 |
+
CREATE TABLE IF NOT EXISTS scraped_data (
|
131 |
+
id INT AUTO_INCREMENT PRIMARY KEY,
|
132 |
+
url VARCHAR(255) NOT NULL,
|
133 |
+
content_hash VARCHAR(64) NOT NULL,
|
134 |
+
change_detected DATETIME NOT NULL
|
135 |
+
)
|
136 |
+
"""
|
137 |
+
cursor.execute(create_scraped_data_table)
|
138 |
+
logging.info("Table 'scraped_data' is ready.")
|
139 |
+
|
140 |
+
# Create indexes for performance
|
141 |
+
create_index_url = "CREATE INDEX IF NOT EXISTS idx_url ON scraped_data(url)"
|
142 |
+
create_index_change = "CREATE INDEX IF NOT EXISTS idx_change_detected ON scraped_data(change_detected)"
|
143 |
+
cursor.execute(create_index_url)
|
144 |
+
cursor.execute(create_index_change)
|
145 |
+
logging.info("Indexes on 'url' and 'change_detected' columns created.")
|
146 |
+
|
147 |
+
# Create table for action logs
|
148 |
+
create_action_logs_table = """
|
149 |
+
CREATE TABLE IF NOT EXISTS action_logs (
|
150 |
+
id INT AUTO_INCREMENT PRIMARY KEY,
|
151 |
+
action VARCHAR(255) NOT NULL,
|
152 |
+
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
|
153 |
+
)
|
154 |
+
"""
|
155 |
+
cursor.execute(create_action_logs_table)
|
156 |
+
logging.info("Table 'action_logs' is ready.")
|
157 |
+
|
158 |
+
except mysql.connector.Error as err:
|
159 |
+
logging.error(f"Error initializing database: {err}")
|
160 |
+
finally:
|
161 |
+
cursor.close()
|
162 |
+
connection.close()
|
163 |
+
logging.info("Database initialization complete.")
|
164 |
+
|
165 |
+
# Function to create WebDriver
|
166 |
+
def create_driver(options: Options) -> webdriver.Chrome:
|
167 |
+
"""
|
168 |
+
Initializes and returns a Selenium Chrome WebDriver instance.
|
169 |
+
"""
|
170 |
+
try:
|
171 |
+
driver = webdriver.Chrome(
|
172 |
+
service=Service(ChromeDriverManager().install()), options=options
|
173 |
+
)
|
174 |
+
logging.info("ChromeDriver initialized successfully.")
|
175 |
+
return driver
|
176 |
+
except Exception as exception:
|
177 |
+
logging.error(f"Error initializing ChromeDriver: {exception}")
|
178 |
+
return None
|
179 |
+
|
180 |
+
# Function to log changes to CSV
|
181 |
+
def log_to_csv(storage_location: str, url: str, content_hash: str, change_detected: str):
|
182 |
+
"""
|
183 |
+
Logs the change to a CSV file in the storage_location.
|
184 |
+
"""
|
185 |
+
try:
|
186 |
+
os.makedirs(storage_location, exist_ok=True)
|
187 |
+
csv_file_path = os.path.join(storage_location, f"{urlparse(url).hostname}_changes.csv")
|
188 |
+
file_exists = os.path.isfile(csv_file_path)
|
189 |
+
|
190 |
+
with open(csv_file_path, "a", newline="", encoding="utf-8") as csvfile:
|
191 |
+
fieldnames = ["date", "time", "url", "content_hash", "change"]
|
192 |
+
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
193 |
+
if not file_exists:
|
194 |
+
writer.writeheader()
|
195 |
+
writer.writerow(
|
196 |
+
{
|
197 |
+
"date": change_detected.split()[0],
|
198 |
+
"time": change_detected.split()[1],
|
199 |
+
"url": url,
|
200 |
+
"content_hash": content_hash,
|
201 |
+
"change": "Content changed",
|
202 |
+
}
|
203 |
+
)
|
204 |
+
logging.info(f"Change detected at {url} on {change_detected} and logged to CSV.")
|
205 |
+
except Exception as e:
|
206 |
+
logging.error(f"Error logging data to CSV: {e}")
|
207 |
+
|
208 |
+
# Function to get initial observation
|
209 |
+
def get_initial_observation(
|
210 |
+
driver: webdriver.Chrome, url: str, content_type: str, selector: str = None
|
211 |
+
) -> str:
|
212 |
+
"""
|
213 |
+
Retrieves the initial content from the URL and returns its MD5 hash.
|
214 |
+
"""
|
215 |
+
try:
|
216 |
+
driver.get(url)
|
217 |
+
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
|
218 |
+
time.sleep(2) # Additional wait for dynamic content
|
219 |
+
|
220 |
+
if content_type == "text":
|
221 |
+
initial_content = driver.page_source
|
222 |
+
elif content_type == "media":
|
223 |
+
if selector:
|
224 |
+
try:
|
225 |
+
elements = WebDriverWait(driver, 5).until(
|
226 |
+
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
|
227 |
+
)
|
228 |
+
initial_content = [element.get_attribute("src") for element in elements]
|
229 |
+
except TimeoutException:
|
230 |
+
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
|
231 |
+
initial_content = []
|
232 |
+
else:
|
233 |
+
elements = driver.find_elements(By.TAG_NAME, "img")
|
234 |
+
initial_content = [element.get_attribute("src") for element in elements]
|
235 |
+
else:
|
236 |
+
initial_content = driver.page_source
|
237 |
+
|
238 |
+
initial_hash = hashlib.md5(str(initial_content).encode("utf-8")).hexdigest()
|
239 |
+
logging.info(f"Initial hash for {url}: {initial_hash}")
|
240 |
+
return initial_hash
|
241 |
+
except Exception as exception:
|
242 |
+
logging.error(f"Error accessing {url}: {exception}")
|
243 |
+
return None
|
244 |
+
|
245 |
+
# Function to monitor URLs for changes
|
246 |
+
def monitor_urls(
|
247 |
+
storage_location: str,
|
248 |
+
urls: list,
|
249 |
+
scrape_interval: int,
|
250 |
+
content_type: str,
|
251 |
+
selector: str = None,
|
252 |
+
progress: gr.Progress = None
|
253 |
+
):
|
254 |
+
"""
|
255 |
+
Monitors the specified URLs for changes and logs any detected changes to the database or CSV.
|
256 |
+
"""
|
257 |
+
global HISTORY, STOP_THREADS
|
258 |
+
previous_hashes = {url: "" for url in urls}
|
259 |
+
|
260 |
+
options = Options()
|
261 |
+
options.add_argument("--headless")
|
262 |
+
options.add_argument("--no-sandbox")
|
263 |
+
options.add_argument("--disable-dev-shm-usage")
|
264 |
+
|
265 |
+
driver = create_driver(options)
|
266 |
+
if driver is None:
|
267 |
+
logging.error("WebDriver could not be initialized. Exiting monitor.")
|
268 |
+
return
|
269 |
+
|
270 |
+
try:
|
271 |
+
while not STOP_THREADS:
|
272 |
+
for url in urls:
|
273 |
+
if STOP_THREADS:
|
274 |
+
break
|
275 |
+
try:
|
276 |
+
driver.get(url)
|
277 |
+
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
|
278 |
+
time.sleep(2) # Additional wait for dynamic content
|
279 |
+
|
280 |
+
if content_type == "text":
|
281 |
+
current_content = driver.page_source
|
282 |
+
elif content_type == "media":
|
283 |
+
if selector:
|
284 |
+
try:
|
285 |
+
elements = WebDriverWait(driver, 5).until(
|
286 |
+
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
|
287 |
+
)
|
288 |
+
current_content = [element.get_attribute("src") for element in elements]
|
289 |
+
except TimeoutException:
|
290 |
+
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
|
291 |
+
current_content = []
|
292 |
+
else:
|
293 |
+
elements = driver.find_elements(By.TAG_NAME, "img")
|
294 |
+
current_content = [element.get_attribute("src") for element in elements]
|
295 |
+
else:
|
296 |
+
current_content = driver.page_source
|
297 |
+
|
298 |
+
current_hash = hashlib.md5(str(current_content).encode("utf-8")).hexdigest()
|
299 |
+
if current_hash != previous_hashes[url]:
|
300 |
+
previous_hashes[url] = current_hash
|
301 |
+
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
302 |
+
HISTORY.append(f"Change detected at {url} on {date_time_str}")
|
303 |
+
|
304 |
+
# Attempt to log to database
|
305 |
+
connection = get_db_connection()
|
306 |
+
if connection:
|
307 |
+
try:
|
308 |
+
cursor = connection.cursor()
|
309 |
+
insert_query = """
|
310 |
+
INSERT INTO scraped_data (url, content_hash, change_detected)
|
311 |
+
VALUES (%s, %s, %s)
|
312 |
+
"""
|
313 |
+
cursor.execute(insert_query, (url, current_hash, date_time_str))
|
314 |
+
connection.commit()
|
315 |
+
logging.info(f"Change detected at {url} on {date_time_str} and logged to database.")
|
316 |
+
except mysql.connector.Error as err:
|
317 |
+
logging.error(f"Error inserting data into database: {err}")
|
318 |
+
# Fallback to CSV
|
319 |
+
log_to_csv(storage_location, url, current_hash, date_time_str)
|
320 |
+
finally:
|
321 |
+
cursor.close()
|
322 |
+
connection.close()
|
323 |
+
else:
|
324 |
+
# Fallback to CSV
|
325 |
+
log_to_csv(storage_location, url, current_hash, date_time_str)
|
326 |
+
|
327 |
+
# Update progress
|
328 |
+
if progress:
|
329 |
+
progress(1)
|
330 |
+
except (
|
331 |
+
NoSuchElementException,
|
332 |
+
StaleElementReferenceException,
|
333 |
+
TimeoutException,
|
334 |
+
Exception,
|
335 |
+
) as e:
|
336 |
+
logging.error(f"Error accessing {url}: {e}")
|
337 |
+
if progress:
|
338 |
+
progress(1)
|
339 |
+
time.sleep(scrape_interval * 60) # Wait for the next scrape interval
|
340 |
+
finally:
|
341 |
+
driver.quit()
|
342 |
+
logging.info("ChromeDriver session ended.")
|
343 |
+
|
344 |
+
# Function to start scraping
|
345 |
+
def start_scraping(
|
346 |
+
storage_location: str,
|
347 |
+
urls: str,
|
348 |
+
scrape_interval: int,
|
349 |
+
content_type: str,
|
350 |
+
selector: str = None,
|
351 |
+
progress: gr.Progress = None
|
352 |
+
) -> str:
|
353 |
+
"""
|
354 |
+
Starts the scraping process in a separate thread with progress indication.
|
355 |
+
"""
|
356 |
+
global CURRENT_TASK, HISTORY, STOP_THREADS
|
357 |
+
|
358 |
+
if STOP_THREADS:
|
359 |
+
STOP_THREADS = False # Reset the flag if previously stopped
|
360 |
+
|
361 |
+
url_list = [url.strip() for url in urls.split(",") if url.strip()]
|
362 |
+
CURRENT_TASK = f"Monitoring URLs: {', '.join(url_list)}"
|
363 |
+
HISTORY.append(f"Task started: {CURRENT_TASK}")
|
364 |
+
logging.info(f"Task started: {CURRENT_TASK}")
|
365 |
+
|
366 |
+
# Initialize database tables
|
367 |
+
initialize_database()
|
368 |
|
369 |
+
# Log initial observations
|
370 |
+
def log_initial_observations():
|
371 |
+
options = Options()
|
372 |
+
options.add_argument("--headless")
|
373 |
+
options.add_argument("--no-sandbox")
|
374 |
+
options.add_argument("--disable-dev-shm-usage")
|
375 |
+
|
376 |
+
driver = create_driver(options)
|
377 |
+
if driver is None:
|
378 |
+
return
|
379 |
+
|
380 |
+
for url in url_list:
|
381 |
+
if STOP_THREADS:
|
382 |
+
break
|
383 |
+
try:
|
384 |
+
initial_hash = get_initial_observation(driver, url, content_type, selector)
|
385 |
+
if initial_hash:
|
386 |
+
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
387 |
+
HISTORY.append(f"Initial observation at {url}: {initial_hash}")
|
388 |
+
|
389 |
+
# Attempt to log to database
|
390 |
+
connection = get_db_connection()
|
391 |
+
if connection:
|
392 |
+
try:
|
393 |
+
cursor = connection.cursor()
|
394 |
+
insert_query = """
|
395 |
+
INSERT INTO scraped_data (url, content_hash, change_detected)
|
396 |
+
VALUES (%s, %s, %s)
|
397 |
+
"""
|
398 |
+
cursor.execute(insert_query, (url, initial_hash, date_time_str))
|
399 |
+
connection.commit()
|
400 |
+
logging.info(f"Initial observation logged for {url} in database.")
|
401 |
+
except mysql.connector.Error as err:
|
402 |
+
logging.error(f"Error inserting initial observation into database: {err}")
|
403 |
+
# Fallback to CSV
|
404 |
+
log_to_csv(storage_location, url, initial_hash, date_time_str)
|
405 |
+
finally:
|
406 |
+
cursor.close()
|
407 |
+
connection.close()
|
408 |
+
else:
|
409 |
+
# Fallback to CSV
|
410 |
+
log_to_csv(storage_location, url, initial_hash, date_time_str)
|
411 |
+
except Exception as e:
|
412 |
+
HISTORY.append(f"Error accessing {url}: {e}")
|
413 |
+
logging.error(f"Error accessing {url}: {e}")
|
414 |
+
driver.quit()
|
415 |
+
|
416 |
+
# Start logging initial observations
|
417 |
+
initial_thread = threading.Thread(target=log_initial_observations, daemon=True)
|
418 |
+
initial_thread.start()
|
419 |
+
|
420 |
+
# Start the monitoring thread with progress
|
421 |
+
monitor_thread = threading.Thread(
|
422 |
+
target=monitor_urls,
|
423 |
+
args=(storage_location, url_list, scrape_interval, content_type, selector, progress),
|
424 |
+
daemon=True,
|
425 |
+
)
|
426 |
+
monitor_thread.start()
|
427 |
+
logging.info("Started scraping thread.")
|
428 |
+
return f"Started scraping {', '.join(url_list)} every {scrape_interval} minutes."
|
429 |
+
|
430 |
+
# Function to stop scraping
|
431 |
+
def stop_scraping() -> str:
|
432 |
+
"""
|
433 |
+
Stops all ongoing scraping threads.
|
434 |
+
"""
|
435 |
+
global STOP_THREADS
|
436 |
+
STOP_THREADS = True
|
437 |
+
HISTORY.append("Scraping stopped by user.")
|
438 |
+
logging.info("Scraping stop signal sent.")
|
439 |
+
return "Scraping has been stopped."
|
440 |
+
|
441 |
+
# Function to display CSV content from MySQL or CSV
|
442 |
+
def display_csv(storage_location: str, url: str) -> str:
|
443 |
+
"""
|
444 |
+
Fetches and returns the scraped data for a given URL from the MySQL database or CSV.
|
445 |
+
"""
|
446 |
+
try:
|
447 |
+
connection = get_db_connection()
|
448 |
+
if connection:
|
449 |
+
try:
|
450 |
+
cursor = connection.cursor(dictionary=True)
|
451 |
+
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC"
|
452 |
+
cursor.execute(query, (url,))
|
453 |
+
results = cursor.fetchall()
|
454 |
+
|
455 |
+
if not results:
|
456 |
+
return "No data available for the selected URL."
|
457 |
+
|
458 |
+
df = pd.DataFrame(results)
|
459 |
+
cursor.close()
|
460 |
+
connection.close()
|
461 |
+
return df.to_string(index=False)
|
462 |
+
except mysql.connector.Error as err:
|
463 |
+
logging.error(f"Error fetching data from database: {err}")
|
464 |
+
# Fallback to CSV
|
465 |
+
else:
|
466 |
+
logging.info("No database connection. Fetching data from CSV.")
|
467 |
+
|
468 |
+
# Fallback to CSV
|
469 |
+
hostname = urlparse(url).hostname
|
470 |
+
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
|
471 |
+
if os.path.exists(csv_path):
|
472 |
+
df = pd.read_csv(csv_path)
|
473 |
+
return df.to_string(index=False)
|
474 |
+
else:
|
475 |
+
return "No data available."
|
476 |
+
|
477 |
+
except Exception as e:
|
478 |
+
logging.error(f"Error fetching data for {url}: {e}")
|
479 |
+
return f"Error fetching data for {url}: {e}"
|
480 |
+
|
481 |
+
# Function to generate RSS feed from MySQL or CSV data
|
482 |
+
def generate_rss_feed(storage_location: str, url: str) -> str:
|
483 |
+
"""
|
484 |
+
Generates an RSS feed for the latest changes detected on a given URL from the MySQL database or CSV.
|
485 |
+
"""
|
486 |
+
try:
|
487 |
+
connection = get_db_connection()
|
488 |
+
rss_feed = ""
|
489 |
+
|
490 |
+
if connection:
|
491 |
+
try:
|
492 |
+
cursor = connection.cursor(dictionary=True)
|
493 |
+
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC LIMIT 10"
|
494 |
+
cursor.execute(query, (url,))
|
495 |
+
results = cursor.fetchall()
|
496 |
+
|
497 |
+
if not results:
|
498 |
+
return "No changes detected to include in RSS feed."
|
499 |
+
|
500 |
+
# Create the root RSS element
|
501 |
+
rss = ET.Element("rss", version="2.0")
|
502 |
+
channel = ET.SubElement(rss, "channel")
|
503 |
+
|
504 |
+
# Add channel elements
|
505 |
+
title = ET.SubElement(channel, "title")
|
506 |
+
title.text = f"RSS Feed for {urlparse(url).hostname}"
|
507 |
+
|
508 |
+
link = ET.SubElement(channel, "link")
|
509 |
+
link.text = url
|
510 |
+
|
511 |
+
description = ET.SubElement(channel, "description")
|
512 |
+
description.text = "Recent changes detected on the website."
|
513 |
+
|
514 |
+
# Add items to the feed
|
515 |
+
for row in results:
|
516 |
+
item = ET.SubElement(channel, "item")
|
517 |
+
|
518 |
+
item_title = ET.SubElement(item, "title")
|
519 |
+
item_title.text = f"Change detected at {row['url']}"
|
520 |
+
|
521 |
+
item_link = ET.SubElement(item, "link")
|
522 |
+
item_link.text = row["url"]
|
523 |
+
|
524 |
+
item_description = ET.SubElement(item, "description")
|
525 |
+
item_description.text = f"Content changed on {row['change_detected']}"
|
526 |
+
|
527 |
+
pub_date = ET.SubElement(item, "pubDate")
|
528 |
+
pub_date.text = datetime.datetime.strptime(
|
529 |
+
str(row['change_detected']), "%Y-%m-%d %H:%M:%S"
|
530 |
+
).strftime("%a, %d %b %Y %H:%M:%S +0000")
|
531 |
+
|
532 |
+
# Generate the XML string
|
533 |
+
rss_feed = ET.tostring(rss, encoding="utf-8", method="xml").decode("utf-8")
|
534 |
+
cursor.close()
|
535 |
+
connection.close()
|
536 |
+
return rss_feed
|
537 |
+
except mysql.connector.Error as err:
|
538 |
+
logging.error(f"Error fetching data from database: {err}")
|
539 |
+
# Fallback to CSV
|
540 |
+
else:
|
541 |
+
logging.info("No database connection. Generating RSS feed from CSV.")
|
542 |
+
|
543 |
+
# Fallback to CSV
|
544 |
+
hostname = urlparse(url).hostname
|
545 |
+
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
|
546 |
+
if os.path.exists(csv_path):
|
547 |
+
df = pd.read_csv(csv_path).tail(10)
|
548 |
+
if df.empty:
|
549 |
+
return "No changes detected to include in RSS feed."
|
550 |
+
|
551 |
+
# Create the root RSS element
|
552 |
+
rss = ET.Element("rss", version="2.0")
|
553 |
+
channel = ET.SubElement(rss, "channel")
|
554 |
+
|
555 |
+
# Add channel elements
|
556 |
+
title = ET.SubElement(channel, "title")
|
557 |
+
title.text = f"RSS Feed for {hostname}"
|
558 |
+
|
559 |
+
link = ET.SubElement(channel, "link")
|
560 |
+
link.text = url
|
561 |
+
|
562 |
+
description = ET.SubElement(channel, "description")
|
563 |
+
description.text = "Recent changes detected on the website."
|
564 |
+
|
565 |
+
# Add items to the feed
|
566 |
+
for _, row in df.iterrows():
|
567 |
+
item = ET.SubElement(channel, "item")
|
568 |
+
|
569 |
+
item_title = ET.SubElement(item, "title")
|
570 |
+
item_title.text = f"Change detected at {row['url']}"
|
571 |
+
|
572 |
+
item_link = ET.SubElement(item, "link")
|
573 |
+
item_link.text = row["url"]
|
574 |
+
|
575 |
+
item_description = ET.SubElement(item, "description")
|
576 |
+
item_description.text = f"Content changed on {row['date']} at {row['time']}"
|
577 |
+
|
578 |
+
pub_date = ET.SubElement(item, "pubDate")
|
579 |
+
pub_date.text = datetime.datetime.strptime(
|
580 |
+
f"{row['date']} {row['time']}", "%Y-%m-%d %H:%M:%S"
|
581 |
+
).strftime("%a, %d %b %Y %H:%M:%S +0000")
|
582 |
+
|
583 |
+
# Generate the XML string
|
584 |
+
rss_feed = ET.tostring(rss, encoding="utf-8", method="xml").decode("utf-8")
|
585 |
+
return rss_feed
|
586 |
+
else:
|
587 |
+
return "No data available."
|
588 |
+
|
589 |
+
except Exception as e:
|
590 |
+
logging.error(f"Error generating RSS feed for {url}: {e}")
|
591 |
+
return f"Error generating RSS feed for {url}: {e}"
|
592 |
+
|
593 |
+
# Function to parse user commands using spaCy
|
594 |
+
def parse_command(message: str) -> tuple:
|
595 |
+
"""
|
596 |
+
Parses the user message using spaCy to identify if it contains a command.
|
597 |
+
Returns the command and its parameters if found, else (None, None).
|
598 |
+
"""
|
599 |
+
doc = nlp(message.lower())
|
600 |
+
command = None
|
601 |
+
params = {}
|
602 |
+
|
603 |
+
# Define command patterns
|
604 |
+
if "filter" in message.lower():
|
605 |
+
# Example: "Filter apples, oranges in column Description"
|
606 |
+
match = re.search(r"filter\s+([\w\s,]+)\s+in\s+column\s+(\w+)", message, re.IGNORECASE)
|
607 |
+
if match:
|
608 |
+
words = [word.strip() for word in match.group(1).split(",")]
|
609 |
+
column = match.group(2)
|
610 |
+
command = "filter"
|
611 |
+
params = {"words": words, "column": column}
|
612 |
+
|
613 |
+
elif "sort" in message.lower():
|
614 |
+
# Example: "Sort Price ascending"
|
615 |
+
match = re.search(r"sort\s+(\w+)\s+(ascending|descending)", message, re.IGNORECASE)
|
616 |
+
if match:
|
617 |
+
column = match.group(1)
|
618 |
+
order = match.group(2)
|
619 |
+
command = "sort"
|
620 |
+
params = {"column": column, "order": order}
|
621 |
+
|
622 |
+
elif "export to csv as" in message.lower():
|
623 |
+
# Example: "Export to CSV as filtered_data.csv"
|
624 |
+
match = re.search(r"export\s+to\s+csv\s+as\s+([\w\-]+\.csv)", message, re.IGNORECASE)
|
625 |
+
if match:
|
626 |
+
filename = match.group(1)
|
627 |
+
command = "export"
|
628 |
+
params = {"filename": filename}
|
629 |
+
|
630 |
+
elif "log action" in message.lower():
|
631 |
+
# Example: "Log action Filtered data for specific fruits"
|
632 |
+
match = re.search(r"log\s+action\s+(.+)", message, re.IGNORECASE)
|
633 |
+
if match:
|
634 |
+
action = match.group(1)
|
635 |
+
command = "log"
|
636 |
+
params = {"action": action}
|
637 |
+
|
638 |
+
return command, params
|
639 |
+
|
640 |
+
# Function to execute parsed commands
|
641 |
+
def execute_command(command: str, params: dict) -> str:
|
642 |
+
"""
|
643 |
+
Executes the corresponding function based on the command and parameters.
|
644 |
+
"""
|
645 |
+
if command == "filter":
|
646 |
+
words = params["words"]
|
647 |
+
column = params["column"]
|
648 |
+
return filter_data(column, words)
|
649 |
+
elif command == "sort":
|
650 |
+
column = params["column"]
|
651 |
+
order = params["order"]
|
652 |
+
return sort_data(column, order)
|
653 |
+
elif command == "export":
|
654 |
+
filename = params["filename"]
|
655 |
+
return export_csv(filename)
|
656 |
+
elif command == "log":
|
657 |
+
action = params["action"]
|
658 |
+
return log_action(action)
|
659 |
+
else:
|
660 |
+
return "Unknown command."
|
661 |
+
|
662 |
+
# Data Manipulation Functions
|
663 |
+
def filter_data(column: str, words: list) -> str:
|
664 |
+
"""
|
665 |
+
Filters the scraped data to include only rows where the specified column contains the given words.
|
666 |
+
Saves the filtered data to a new CSV file.
|
667 |
+
"""
|
668 |
+
try:
|
669 |
+
storage_location = DEFAULT_FILE_PATH
|
670 |
+
|
671 |
+
connection = get_db_connection()
|
672 |
+
if connection:
|
673 |
+
try:
|
674 |
+
cursor = connection.cursor(dictionary=True)
|
675 |
+
# Fetch all data
|
676 |
+
query = "SELECT * FROM scraped_data"
|
677 |
+
cursor.execute(query)
|
678 |
+
results = cursor.fetchall()
|
679 |
+
|
680 |
+
if not results:
|
681 |
+
return "No data available to filter."
|
682 |
+
|
683 |
+
df = pd.DataFrame(results)
|
684 |
+
# Create a regex pattern to match any of the words
|
685 |
+
pattern = '|'.join(words)
|
686 |
+
if column not in df.columns:
|
687 |
+
return f"Column '{column}' does not exist in the data."
|
688 |
+
|
689 |
+
filtered_df = df[df[column].astype(str).str.contains(pattern, case=False, na=False)]
|
690 |
+
|
691 |
+
if filtered_df.empty:
|
692 |
+
return f"No records found with words {words} in column '{column}'."
|
693 |
+
|
694 |
+
# Save the filtered data to a new CSV
|
695 |
+
timestamp = int(time.time())
|
696 |
+
filtered_csv = os.path.join(storage_location, f"filtered_data_{timestamp}.csv")
|
697 |
+
filtered_df.to_csv(filtered_csv, index=False)
|
698 |
+
logging.info(f"Data filtered on column '{column}' for words {words}.")
|
699 |
+
return f"Data filtered and saved to {filtered_csv}."
|
700 |
+
except mysql.connector.Error as err:
|
701 |
+
logging.error(f"Error fetching data from database: {err}")
|
702 |
+
# Fallback to CSV
|
703 |
+
else:
|
704 |
+
logging.info("No database connection. Filtering data from CSV.")
|
705 |
+
|
706 |
+
# Fallback to CSV
|
707 |
+
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
|
708 |
+
if not csv_files:
|
709 |
+
return "No CSV files found to filter."
|
710 |
+
|
711 |
+
# Assume the latest CSV is the target
|
712 |
+
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
|
713 |
+
df = pd.read_csv(latest_csv)
|
714 |
+
|
715 |
+
if column not in df.columns:
|
716 |
+
return f"Column '{column}' does not exist in the data."
|
717 |
+
|
718 |
+
filtered_df = df[df[column].astype(str).str.contains('|'.join(words), case=False, na=False)]
|
719 |
+
|
720 |
+
if filtered_df.empty:
|
721 |
+
return f"No records found with words {words} in column '{column}'."
|
722 |
+
|
723 |
+
# Save the filtered data to a new CSV
|
724 |
+
timestamp = int(time.time())
|
725 |
+
filtered_csv = latest_csv.replace(".csv", f"_filtered_{timestamp}.csv")
|
726 |
+
filtered_df.to_csv(filtered_csv, index=False)
|
727 |
+
logging.info(f"Data filtered on column '{column}' for words {words}.")
|
728 |
+
return f"Data filtered and saved to {filtered_csv}."
|
729 |
+
except Exception as e:
|
730 |
+
logging.error(f"Error filtering data: {e}")
|
731 |
+
return f"Error filtering data: {e}"
|
732 |
+
|
733 |
+
def sort_data(column: str, order: str) -> str:
|
734 |
+
"""
|
735 |
+
Sorts the scraped data based on the specified column and order.
|
736 |
+
Saves the sorted data to a new CSV file.
|
737 |
+
"""
|
738 |
+
try:
|
739 |
+
storage_location = DEFAULT_FILE_PATH
|
740 |
+
|
741 |
+
connection = get_db_connection()
|
742 |
+
if connection:
|
743 |
+
try:
|
744 |
+
cursor = connection.cursor(dictionary=True)
|
745 |
+
# Fetch all data
|
746 |
+
query = "SELECT * FROM scraped_data"
|
747 |
+
cursor.execute(query)
|
748 |
+
results = cursor.fetchall()
|
749 |
+
|
750 |
+
if not results:
|
751 |
+
return "No data available to sort."
|
752 |
+
|
753 |
+
df = pd.DataFrame(results)
|
754 |
+
if column not in df.columns:
|
755 |
+
return f"Column '{column}' does not exist in the data."
|
756 |
+
|
757 |
+
ascending = True if order.lower() == "ascending" else False
|
758 |
+
sorted_df = df.sort_values(by=column, ascending=ascending)
|
759 |
+
|
760 |
+
# Save the sorted data to a new CSV
|
761 |
+
timestamp = int(time.time())
|
762 |
+
sorted_csv = os.path.join(storage_location, f"sorted_data_{column}_{order.lower()}_{timestamp}.csv")
|
763 |
+
sorted_df.to_csv(sorted_csv, index=False)
|
764 |
+
logging.info(f"Data sorted on column '{column}' in {order} order.")
|
765 |
+
return f"Data sorted and saved to {sorted_csv}."
|
766 |
+
except mysql.connector.Error as err:
|
767 |
+
logging.error(f"Error fetching data from database: {err}")
|
768 |
+
# Fallback to CSV
|
769 |
+
else:
|
770 |
+
logging.info("No database connection. Sorting data from CSV.")
|
771 |
+
|
772 |
+
# Fallback to CSV
|
773 |
+
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
|
774 |
+
if not csv_files:
|
775 |
+
return "No CSV files found to sort."
|
776 |
+
|
777 |
+
# Assume the latest CSV is the target
|
778 |
+
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
|
779 |
+
df = pd.read_csv(latest_csv)
|
780 |
+
|
781 |
+
if column not in df.columns:
|
782 |
+
return f"Column '{column}' does not exist in the data."
|
783 |
+
|
784 |
+
ascending = True if order.lower() == "ascending" else False
|
785 |
+
sorted_df = df.sort_values(by=column, ascending=ascending)
|
786 |
+
|
787 |
+
# Save the sorted data to a new CSV
|
788 |
+
timestamp = int(time.time())
|
789 |
+
sorted_csv = latest_csv.replace(".csv", f"_sorted_{order.lower()}_{timestamp}.csv")
|
790 |
+
sorted_df.to_csv(sorted_csv, index=False)
|
791 |
+
logging.info(f"Data sorted on column '{column}' in {order} order.")
|
792 |
+
return f"Data sorted and saved to {sorted_csv}."
|
793 |
+
except Exception as e:
|
794 |
+
logging.error(f"Error sorting data: {e}")
|
795 |
+
return f"Error sorting data: {e}"
|
796 |
+
|
797 |
+
def export_csv(filename: str) -> str:
|
798 |
+
"""
|
799 |
+
Exports the latest scraped data to a specified CSV filename.
|
800 |
+
"""
|
801 |
+
try:
|
802 |
+
storage_location = DEFAULT_FILE_PATH
|
803 |
+
|
804 |
+
connection = get_db_connection()
|
805 |
+
if connection:
|
806 |
+
try:
|
807 |
+
cursor = connection.cursor(dictionary=True)
|
808 |
+
# Fetch all data
|
809 |
+
query = "SELECT * FROM scraped_data"
|
810 |
+
cursor.execute(query)
|
811 |
+
results = cursor.fetchall()
|
812 |
+
|
813 |
+
if not results:
|
814 |
+
return "No data available to export."
|
815 |
+
|
816 |
+
df = pd.DataFrame(results)
|
817 |
+
export_path = os.path.join(storage_location, filename)
|
818 |
+
df.to_csv(export_path, index=False)
|
819 |
+
logging.info(f"Data exported to {export_path}.")
|
820 |
+
return f"Data exported to {export_path}."
|
821 |
+
except mysql.connector.Error as err:
|
822 |
+
logging.error(f"Error exporting data from database: {err}")
|
823 |
+
# Fallback to CSV
|
824 |
+
else:
|
825 |
+
logging.info("No database connection. Exporting data from CSV.")
|
826 |
+
|
827 |
+
# Fallback to CSV
|
828 |
+
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
|
829 |
+
if not csv_files:
|
830 |
+
return "No CSV files found to export."
|
831 |
+
|
832 |
+
# Assume the latest CSV is the target
|
833 |
+
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
|
834 |
+
df = pd.read_csv(latest_csv)
|
835 |
+
export_path = os.path.join(storage_location, filename)
|
836 |
+
df.to_csv(export_path, index=False)
|
837 |
+
logging.info(f"Data exported to {export_path}.")
|
838 |
+
return f"Data exported to {export_path}."
|
839 |
+
except Exception as e:
|
840 |
+
logging.error(f"Error exporting CSV: {e}")
|
841 |
+
return f"Error exporting CSV: {e}"
|
842 |
+
|
843 |
+
def log_action(action: str) -> str:
|
844 |
+
"""
|
845 |
+
Logs a custom action message to the MySQL database or CSV.
|
846 |
+
"""
|
847 |
+
try:
|
848 |
+
connection = get_db_connection()
|
849 |
+
if connection:
|
850 |
+
try:
|
851 |
+
cursor = connection.cursor()
|
852 |
+
insert_query = """
|
853 |
+
INSERT INTO action_logs (action)
|
854 |
+
VALUES (%s)
|
855 |
+
"""
|
856 |
+
cursor.execute(insert_query, (action,))
|
857 |
+
connection.commit()
|
858 |
+
logging.info(f"Action logged in database: {action}")
|
859 |
+
cursor.close()
|
860 |
+
connection.close()
|
861 |
+
return f"Action logged: {action}"
|
862 |
+
except mysql.connector.Error as err:
|
863 |
+
logging.error(f"Error logging action to database: {err}")
|
864 |
+
# Fallback to CSV
|
865 |
+
else:
|
866 |
+
logging.info("No database connection. Logging action to CSV.")
|
867 |
+
|
868 |
+
# Fallback to CSV
|
869 |
+
storage_location = DEFAULT_FILE_PATH
|
870 |
+
try:
|
871 |
+
os.makedirs(storage_location, exist_ok=True)
|
872 |
+
csv_file_path = os.path.join(storage_location, "action_logs.csv")
|
873 |
+
file_exists = os.path.isfile(csv_file_path)
|
874 |
+
|
875 |
+
with open(csv_file_path, "a", newline="", encoding="utf-8") as csvfile:
|
876 |
+
fieldnames = ["timestamp", "action"]
|
877 |
+
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
878 |
+
if not file_exists:
|
879 |
+
writer.writeheader()
|
880 |
+
writer.writerow(
|
881 |
+
{
|
882 |
+
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
883 |
+
"action": action,
|
884 |
+
}
|
885 |
+
)
|
886 |
+
logging.info(f"Action logged to CSV: {action}")
|
887 |
+
return f"Action logged: {action}"
|
888 |
+
except Exception as e:
|
889 |
+
logging.error(f"Error logging action to CSV: {e}")
|
890 |
+
return f"Error logging action: {e}"
|
891 |
+
except Exception as e:
|
892 |
+
logging.error(f"Error logging action: {e}")
|
893 |
+
return f"Error logging action: {e}"
|
894 |
+
|
895 |
+
# Function to get the latest CSV file based on modification time
|
896 |
+
def get_latest_csv() -> str:
|
897 |
+
"""
|
898 |
+
Retrieves the latest CSV file from the storage directory based on modification time.
|
899 |
+
"""
|
900 |
+
try:
|
901 |
+
storage_location = "/home/users/app/scraped_data"
|
902 |
+
csv_files = [f for f in os.listdir(storage_location) if f.endswith(".csv")]
|
903 |
+
if not csv_files:
|
904 |
+
return None
|
905 |
+
|
906 |
+
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
|
907 |
+
return latest_csv
|
908 |
+
except Exception as e:
|
909 |
+
logging.error(f"Error retrieving latest CSV: {e}")
|
910 |
+
return None
|
911 |
+
|
912 |
+
def respond(
|
913 |
+
message: str,
|
914 |
+
history: list,
|
915 |
+
system_message: str,
|
916 |
+
max_tokens: int,
|
917 |
+
temperature: float,
|
918 |
+
top_p: float,
|
919 |
+
) -> str:
|
920 |
+
"""
|
921 |
+
Generates a response using OpenLlamaForCausalLM.
|
922 |
+
"""
|
923 |
+
try:
|
924 |
+
# Check if the message contains a command
|
925 |
+
command, params = parse_command(message)
|
926 |
+
if command:
|
927 |
+
# Execute the corresponding function
|
928 |
+
response = execute_command(command, params)
|
929 |
+
else:
|
930 |
+
# Generate a regular response using OpenLlama
|
931 |
+
prompt = (
|
932 |
+
f"System: {system_message}\n"
|
933 |
+
f"History: {history}\n"
|
934 |
+
f"User: {message}\n"
|
935 |
+
f"Assistant:"
|
936 |
+
)
|
937 |
+
response = openllama_pipeline(
|
938 |
+
prompt,
|
939 |
+
max_length=max_tokens,
|
940 |
+
temperature=temperature,
|
941 |
+
top_p=top_p,
|
942 |
+
)[0]["generated_text"]
|
943 |
+
|
944 |
+
|
945 |
+
# Extract the assistant's reply
|
946 |
+
response = response.split("Assistant:")[-1].strip()
|
947 |
+
return response
|
948 |
+
except Exception as e:
|
949 |
+
logging.error(f"Error generating response: {e}")
|
950 |
+
return "Error generating response."
|
951 |
+
|
952 |
+
# Define the Gradio interface
|
953 |
+
def create_interface() -> gr.Blocks():
|
954 |
+
"""
|
955 |
+
Defines and returns the Gradio interface for the application.
|
956 |
+
"""
|
957 |
+
with gr.Blocks() as demo:
|
958 |
+
gr.Markdown("# All-in-One Scraper, Database, and RSS Feeder")
|
959 |
+
|
960 |
+
with gr.Row():
|
961 |
+
with gr.Column():
|
962 |
+
# Scraping Controls
|
963 |
+
storage_location = gr.Textbox(
|
964 |
+
value=DEFAULT_FILE_PATH, label="Storage Location"
|
965 |
+
)
|
966 |
+
urls = gr.Textbox(
|
967 |
+
label="URLs (comma separated)",
|
968 |
+
placeholder="https://example.com, https://anotherexample.com",
|
969 |
+
)
|
970 |
+
scrape_interval = gr.Slider(
|
971 |
+
minimum=1,
|
972 |
+
maximum=60,
|
973 |
+
value=5,
|
974 |
+
step=1,
|
975 |
+
label="Scrape Interval (minutes)",
|
976 |
+
)
|
977 |
+
content_type = gr.Radio(
|
978 |
+
choices=["text", "media", "both"],
|
979 |
+
value="text",
|
980 |
+
label="Content Type",
|
981 |
+
)
|
982 |
+
selector = gr.Textbox(
|
983 |
+
label="CSS Selector for Media (Optional)",
|
984 |
+
placeholder="e.g., img.main-image",
|
985 |
+
)
|
986 |
+
start_button = gr.Button("Start Scraping")
|
987 |
+
stop_button = gr.Button("Stop Scraping")
|
988 |
+
status_output = gr.Textbox(
|
989 |
+
label="Status Output", interactive=False, lines=2
|
990 |
+
)
|
991 |
+
|
992 |
+
with gr.Column():
|
993 |
+
# Chat Interface
|
994 |
+
chat_history = gr.Chatbot(label="Chat History")
|
995 |
+
with gr.Row():
|
996 |
+
message = gr.Textbox(label="Message", placeholder="Type your message here...")
|
997 |
+
system_message = gr.Textbox(
|
998 |
+
value="You are a helpful assistant.", label="System message"
|
999 |
+
)
|
1000 |
+
max_tokens = gr.Slider(
|
1001 |
+
minimum=1,
|
1002 |
+
maximum=2048,
|
1003 |
+
value=512,
|
1004 |
+
step=1,
|
1005 |
+
label="Max new tokens",
|
1006 |
+
)
|
1007 |
+
temperature = gr.Slider(
|
1008 |
+
minimum=0.1,
|
1009 |
+
maximum=4.0,
|
1010 |
+
value=0.7,
|
1011 |
+
step=0.1,
|
1012 |
+
label="Temperature",
|
1013 |
+
)
|
1014 |
+
top_p = gr.Slider(
|
1015 |
+
minimum=0.1,
|
1016 |
+
maximum=1.0,
|
1017 |
+
value=0.95,
|
1018 |
+
step=0.05,
|
1019 |
+
label="Top-p (nucleus sampling)",
|
1020 |
+
)
|
1021 |
+
response_box = gr.Textbox(label="Response", interactive=False, lines=2)
|
1022 |
+
|
1023 |
+
with gr.Row():
|
1024 |
+
with gr.Column():
|
1025 |
+
# CSV Display Controls
|
1026 |
+
selected_url_csv = gr.Textbox(
|
1027 |
+
label="Select URL for CSV Content",
|
1028 |
+
placeholder="https://example.com",
|
1029 |
+
)
|
1030 |
+
csv_button = gr.Button("Display CSV Content")
|
1031 |
+
csv_content_output = gr.Textbox(
|
1032 |
+
label="CSV Content Output", interactive=False, lines=10
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
with gr.Column():
|
1036 |
+
# RSS Feed Generation Controls
|
1037 |
+
selected_url_rss = gr.Textbox(
|
1038 |
+
label="Select URL for RSS Feed",
|
1039 |
+
placeholder="https://example.com",
|
1040 |
+
)
|
1041 |
+
rss_button = gr.Button("Generate RSS Feed")
|
1042 |
+
rss_output = gr.Textbox(
|
1043 |
+
label="RSS Feed Output", interactive=False, lines=20
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
# Historical Data View
|
1047 |
+
with gr.Row():
|
1048 |
+
historical_view_url = gr.Textbox(
|
1049 |
+
label="Select URL for Historical Data",
|
1050 |
+
placeholder="https://example.com",
|
1051 |
+
)
|
1052 |
+
historical_button = gr.Button("View Historical Data")
|
1053 |
+
historical_output = gr.Dataframe(
|
1054 |
+
headers=["ID", "URL", "Content Hash", "Change Detected"],
|
1055 |
+
label="Historical Data",
|
1056 |
+
interactive=False
|
1057 |
+
)
|
1058 |
+
|
1059 |
+
|
1060 |
+
|
1061 |
+
# Connect buttons to their respective functions
|
1062 |
+
start_button.click(
|
1063 |
+
fn=start_scraping,
|
1064 |
+
inputs=[
|
1065 |
+
storage_location,
|
1066 |
+
urls,
|
1067 |
+
scrape_interval,
|
1068 |
+
content_type,
|
1069 |
+
selector,
|
1070 |
+
|
1071 |
+
],
|
1072 |
+
outputs=status_output,
|
1073 |
+
)
|
1074 |
+
|
1075 |
+
stop_button.click(fn=stop_scraping, outputs=status_output)
|
1076 |
+
|
1077 |
+
csv_button.click(
|
1078 |
+
fn=display_csv,
|
1079 |
+
inputs=[storage_location, selected_url_csv],
|
1080 |
+
outputs=csv_content_output,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
rss_button.click(
|
1084 |
+
fn=generate_rss_feed,
|
1085 |
+
inputs=[storage_location, selected_url_rss],
|
1086 |
+
outputs=rss_output,
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
historical_button.click(
|
1090 |
+
fn=display_historical_data,
|
1091 |
+
inputs=[storage_location, historical_view_url],
|
1092 |
+
outputs=historical_output,
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
# Connect message submission to the chat interface
|
1096 |
+
def update_chat(message_input, history, system_msg, max_toks, temp, top_p_val):
|
1097 |
+
if not message_input.strip():
|
1098 |
+
return history, "Please enter a message."
|
1099 |
+
|
1100 |
+
response = respond(
|
1101 |
+
message_input,
|
1102 |
+
history,
|
1103 |
+
system_msg,
|
1104 |
+
max_toks,
|
1105 |
+
temp,
|
1106 |
+
top_p_val,
|
1107 |
+
)
|
1108 |
+
history.append((message_input, response))
|
1109 |
+
return history, response
|
1110 |
+
|
1111 |
+
message.submit(
|
1112 |
+
update_chat,
|
1113 |
+
inputs=[
|
1114 |
+
message,
|
1115 |
+
chat_history,
|
1116 |
+
system_message,
|
1117 |
+
max_tokens,
|
1118 |
+
temperature,
|
1119 |
+
top_p,
|
1120 |
+
],
|
1121 |
+
outputs=[chat_history, response_box],
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
return demo
|
1125 |
+
|
1126 |
+
# Function to display historical data
|
1127 |
+
def display_historical_data(storage_location: str, url: str):
|
1128 |
+
"""
|
1129 |
+
Retrieves and displays historical scraping data for a given URL.
|
1130 |
+
"""
|
1131 |
+
try:
|
1132 |
+
connection = get_db_connection()
|
1133 |
+
if connection:
|
1134 |
+
try:
|
1135 |
+
cursor = connection.cursor(dictionary=True)
|
1136 |
+
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC"
|
1137 |
+
cursor.execute(query, (url,))
|
1138 |
+
results = cursor.fetchall()
|
1139 |
+
|
1140 |
+
if not results:
|
1141 |
+
return pd.DataFrame()
|
1142 |
+
|
1143 |
+
df = pd.DataFrame(results)
|
1144 |
+
cursor.close()
|
1145 |
+
connection.close()
|
1146 |
+
return df
|
1147 |
+
except mysql.connector.Error as err:
|
1148 |
+
logging.error(f"Error fetching historical data from database: {err}")
|
1149 |
+
# Fallback to CSV
|
1150 |
+
else:
|
1151 |
+
logging.info("No database connection. Fetching historical data from CSV.")
|
1152 |
+
|
1153 |
+
# Fallback to CSV
|
1154 |
+
hostname = urlparse(url).hostname
|
1155 |
+
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
|
1156 |
+
if os.path.exists(csv_path):
|
1157 |
+
df = pd.read_csv(csv_path)
|
1158 |
+
return df
|
1159 |
+
else:
|
1160 |
+
return pd.DataFrame()
|
1161 |
+
except Exception as e:
|
1162 |
+
logging.error(f"Error fetching historical data for {url}: {e}")
|
1163 |
+
return pd.DataFrame()
|
1164 |
+
|
1165 |
+
def load_model():
|
1166 |
+
"""
|
1167 |
+
Loads the openLlama model and tokenizer once and returns the pipeline.
|
1168 |
+
"""
|
1169 |
+
try:
|
1170 |
+
model_name = "openlm-research/open_llama_3b_v2"
|
1171 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, legacy=False)
|
1172 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
1173 |
+
|
1174 |
+
# This should be inside the try block
|
1175 |
+
max_supported_length = 2048
|
1176 |
+
|
1177 |
+
openllama_pipeline = pipeline(
|
1178 |
+
"text-generation",
|
1179 |
+
model=model,
|
1180 |
+
tokenizer=tokenizer,
|
1181 |
+
truncation=True,
|
1182 |
+
max_length=max_supported_length,
|
1183 |
+
temperature=0.7,
|
1184 |
+
top_p=0.95,
|
1185 |
+
device=0 if torch.cuda.is_available() else -1,
|
1186 |
+
)
|
1187 |
+
logging.info("Model loaded successfully.")
|
1188 |
+
return openllama_pipeline # Return the pipeline
|
1189 |
+
except Exception as e:
|
1190 |
+
logging.error(f"Error loading google/flan-t5-xl model: {e}")
|
1191 |
+
return None
|
1192 |
|
1193 |
def load_model(model_name: str):
|
1194 |
"""
|
|
|
1215 |
logging.error(f"Error loading {model_name} model: {e}")
|
1216 |
return None
|
1217 |
|
1218 |
+
# Automated Testing using unittest
|
1219 |
+
class TestApp(unittest.TestCase):
|
1220 |
+
def test_parse_command_filter(self):
|
1221 |
+
command = "Filter apples, oranges in column Description"
|
1222 |
+
parsed_command = parse_command(command)
|
1223 |
+
self.assertEqual(parsed_command[0], "filter")
|
1224 |
+
self.assertListEqual(parsed_command[1]["words"], ["apples", "oranges"])
|
1225 |
+
self.assertEqual(parsed_command[1]["column"], "Description")
|
1226 |
+
|
1227 |
+
def test_parse_command_sort(self):
|
1228 |
+
command = "Sort Price ascending"
|
1229 |
+
parsed_command = parse_command(command)
|
1230 |
+
self.assertEqual(parsed_command[0], "sort")
|
1231 |
+
self.assertEqual(parsed_command[1]["column"], "Price")
|
1232 |
+
self.assertEqual(parsed_command[1]["order"], "ascending")
|
1233 |
+
|
1234 |
+
def test_parse_command_export(self):
|
1235 |
+
command = "Export to CSV as filtered_data.csv"
|
1236 |
+
parsed_command = parse_command(command)
|
1237 |
+
self.assertEqual(parsed_command[0], "export")
|
1238 |
+
self.assertEqual(parsed_command[1]["filename"], "filtered_data.csv")
|
1239 |
+
|
1240 |
+
def test_parse_command_log(self):
|
1241 |
+
command = "Log action Filtered data for specific fruits"
|
1242 |
+
parsed_command = parse_command(command)
|
1243 |
+
self.assertEqual(parsed_command[0], "log")
|
1244 |
+
self.assertEqual(parsed_command[1]["action"], "Filtered data for specific fruits")
|
1245 |
+
|
1246 |
+
def test_database_connection(self):
|
1247 |
+
connection = get_db_connection()
|
1248 |
+
# Connection may be None if not configured; adjust the test accordingly
|
1249 |
+
if connection:
|
1250 |
+
self.assertTrue(connection.is_connected())
|
1251 |
+
connection.close()
|
1252 |
+
else:
|
1253 |
+
self.assertIsNone(connection)
|
1254 |
+
|
1255 |
+
def main():
|
1256 |
+
# Initialize and run the application
|
1257 |
+
logging.info("Starting the application...")
|
1258 |
+
model = load_model()
|
1259 |
+
if model:
|
1260 |
+
logging.info("Application started successfully.")
|
1261 |
+
print("Main function executed")
|
1262 |
+
print("Creating interface...")
|
1263 |
+
demo = create_interface()
|
1264 |
+
print("Launching interface...")
|
1265 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
1266 |
+
else:
|
1267 |
+
logging.error("Failed to start the application.")
|
1268 |
+
|
1269 |
+
# Main execution
|
1270 |
+
if __name__ == "__main__":
|
1271 |
+
# Initialize database
|
1272 |
+
initialize_database()
|
1273 |
+
|
1274 |
+
# Create and launch Gradio interface
|
1275 |
+
demo = create_interface()
|
1276 |
+
demo.launch()
|
1277 |
+
|
1278 |
+
# Run automated tests
|
1279 |
+
unittest.main(argv=[''], exit=False)
|