import datetime import os import csv import time import hashlib import logging import gradio as gr from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options from webdriver_manager.chrome import ChromeDriverManager from huggingface_hub import InferenceClient import random import yaml # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Define constants DATE_TIME_STR = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") PURPOSE = f"You go to Culvers sites, you continuously seek changes on them since your last observation. Anything new that gets logged and dumped into csv, stored in your log folder at user/app/scraped_data." HISTORY = [] CURRENT_TASK = None DEFAULT_FILE_PATH = "user/app/scraped_data/culver/culvers_changes.csv" # Ensure the directory exists os.makedirs(os.path.dirname(DEFAULT_FILE_PATH), exist_ok=True) # Function to monitor URLs for changes def monitor_urls(storage_location, urls, scrape_interval, content_type): global HISTORY previous_hashes = [""] * len(urls) try: with webdriver.Chrome(service=Service(ChromeDriverManager().install()), options=Options()) as driver: while True: for i, url in enumerate(urls): try: driver.get(url) time.sleep(2) # Wait for the page to load if content_type == "text": current_content = driver.page_source elif content_type == "media": current_content = driver.find_elements_by_tag_name("img") else: current_content = driver.page_source current_hash = hashlib.md5(str(current_content).encode('utf-8')).hexdigest() if current_hash != previous_hashes[i]: previous_hashes[i] = current_hash date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") HISTORY.append(f"Change detected at {url} on {date_time_str}") with open(storage_location, "a", newline="") as csvfile: csv_writer = csv.DictWriter(csvfile, fieldnames=["date", "time", "url", "change"]) csv_writer.writerow({"date": date_time_str.split()[0], "time": date_time_str.split()[1], "url": url, "change": "Content changed"}) logging.info(f"Change detected at {url} on {date_time_str}") except Exception as e: logging.error(f"Error accessing {url}: {e}") time.sleep(scrape_interval * 60) # Check every scrape_interval minutes except Exception as e: logging.error(f"Error starting ChromeDriver: {e}") # Define main function to handle user input def handle_input(storage_location, urls, scrape_interval, content_type): global CURRENT_TASK, HISTORY CURRENT_TASK = f"Monitoring URLs: {', '.join(urls)}" HISTORY.append(f"Task started: {CURRENT_TASK}") monitor_urls(storage_location, urls, scrape_interval, content_type) return TASK_PROMPT.format(task=CURRENT_TASK, history="\n".join(map(str, HISTORY))) # Load custom prompts try: with open("custom_prompts.yaml", "r") as fp: custom_prompts = yaml.safe_load(fp) except FileNotFoundError: custom_prompts = {"WEB_DEV": "", "AI_SYSTEM_PROMPT": "", "PYTHON_CODE_DEV": "", "CODE_GENERATION": "", "CODE_INTERPRETATION": "", "CODE_TRANSLATION": "", "CODE_IMPLEMENTATION": ""} # Define agents AGENTS = ["WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV", "CODE_GENERATION", "CODE_INTERPRETATION", "CODE_TRANSLATION", "CODE_IMPLEMENTATION"] # Define the Mistral inference client client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") # Define the chat response function def respond(message, history, system_message, max_tokens, temperature, top_p): return generate(message, history, system_message, max_tokens, temperature, top_p) def start_scraping(storage_location, url1, url2, url3, url4, url5, url6, url7, url8, url9, url10, scrape_interval, content_type): urls = [url for url in [url1, url2, url3, url4, url5, url6, url7, url8, url9, url10] if url] handle_input(storage_location, urls, scrape_interval, content_type) # Start transaction inspector.start_transaction('start_scraping') # Scrape data while True: # Check for scrape_interval time.sleep(scrape_interval * 60) # Check every scrape_interval minutes # End transaction inspector.end_transaction() return f"Started scraping {', '.join(urls)} every {scrape_interval} minutes." # Function to display CSV content def display_csv(storage_location): if os.path.exists(storage_location): with open(storage_location, "r") as file: return file.read() else: return "No data available." # Create Gradio interface def chat_interface(message, system_message, max_tokens, temperature, top_p, storage_location, url1, url2, url3, url4, url5, url6, url7, url8, url9, url10, scrape_interval, content_type): global HISTORY response = respond(message, HISTORY, system_message, max_tokens, temperature, top_p) HISTORY.append((message, response)) return HISTORY, "" demo = gr.Blocks() with demo: with gr.Row(): with gr.Column(): message = gr.Textbox(label="Message") system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message") max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") storage_location = gr.Textbox(value=DEFAULT_FILE_PATH, label="Storage Location") url1 = gr.Textbox(value="https://www.culver.k12.in/", label="URL 1") url2 = gr.Textbox(value="https://www.facebook.com/CulverCommunitySchools", label="URL 2") url3 = gr.Textbox(label="URL 3") url4 = gr.Textbox(label="URL 4") url5 = gr.Textbox(label="URL 5") url6 = gr.Textbox(label="URL 6") url7 = gr.Textbox(label="URL 7") url8 = gr.Textbox(label="URL 8") url9 = gr.Textbox(label="URL 9") url10 = gr.Textbox(label="URL 10") scrape_interval = gr.Slider(minimum=1, maximum=60, value=5, step=1, label="Scrape Interval (minutes)") content_type = gr.Radio(choices=["text", "media", "both"], value="text", label="Content Type") start_button = gr.Button("Start Scraping") csv_output = gr.Textbox(label="CSV Output", interactive=False) with gr.Column(): chat_history = gr.Chatbot(label="Chat History") response_box = gr.Textbox(label="Response") start_button.click(start_scraping, inputs=[storage_location, url1, url2, url3, url4, url5, url6, url7, url8, url9, url10, scrape_interval, content_type], outputs=csv_output) message.submit(chat_interface, inputs=[message, system_message, max_tokens, temperature, top_p, storage_location, url1, url2, url3, url4, url5, url6, url7, url8, url9, url10, scrape_interval, content_type], outputs=[chat_history, response_box]) if __name__ == "__main__": demo.launch()