Spaces:
Runtime error
Runtime error
File size: 7,609 Bytes
c5758aa 7d3b433 c5758aa 7d3b433 c5758aa 7d3b433 c5758aa 7d3b433 c5758aa 7d3b433 c5758aa f059638 c5758aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import asyncio
import logging
from typing import Dict, Any
from functools import partial
from flask import Flask, request, jsonify
from langchain import PromptTemplate, LLMChain
from langchain.llms import OpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.document_loaders import TextLoader
logging.basicConfig(level=logging.INFO)
# Define core component classes
class Task:
def __init__(self, task_name: str, input_data: Any, agent_name: str):
self.task_name = task_name
self.input_data = input_data
self.agent_name = agent_name
class ModelManager:
def __init__(self):
self.model = None
async def start(self):
logging.info("Starting model.")
await asyncio.sleep(1) # Simulate loading time
async def stop(self):
logging.info("Unloading model.")
class CodeArchitect:
def __init__(self, model_manager: ModelManager, model=None):
self.model_manager = model_manager
self.generator = model if model else pipeline("text-generation", model="gpt2")
async def start(self):
await self.model_manager.start()
async def stop(self):
await self.model_manager.stop()
async def generate_code(self, text_input: str) -> str:
response = self.generator(text_input, max_length=5000, num_return_sequences=1)[0]['generated_text']
return response
class UIUXWizard:
def __init__(self, model_manager: ModelManager, vector_store=None):
self.model_manager = model_manager
self.vector_store = vector_store
self.conversation_chain = ConversationChain(
llm=OpenAI(temperature=0.7),
memory=ConversationBufferMemory(),
)
async def start(self):
await self.model_manager.start()
async def stop(self):
await self.model_manager.stop()
def get_memory_response(self, query):
if self.vector_store is None:
return "No memory available."
else:
results = self.vector_store.similarity_search(query, k=3)
return "\n".join(results)
def get_conversation_response(self, query):
return self.conversation_chain.run(query)
# Define VersionControl class
class VersionControl:
def __init__(self, system_name: str):
self.system_name = system_name
async def start(self):
logging.info(f"Starting version control system: {self.system_name}")
await asyncio.sleep(1) # Simulate initialization time
async def stop(self):
logging.info(f"Stopping version control system: {self.system_name}")
# Define Documentation class
class Documentation:
def __init__(self, system_name: str):
self.system_name = system_name
async def start(self):
logging.info(f"Starting documentation system: {self.system_name}")
await asyncio.sleep(1) # Simulate initialization time
async def stop(self):
logging.info(f"Stopping documentation system: {self.system_name}")
class BuildAutomation:
def __init__(self, system_name: str):
self.system_name = system_name
async def start(self):
logging.info(f"Starting build automation system: {self.system_name}")
await asyncio.sleep(1) # Simulate initialization time
async def stop(self):
logging.info(f"Stopping build automation system: {self.system_name}")
# Define EliteDeveloperCluster class
class EliteDeveloperCluster:
def __init__(self, config: Dict[str, Any], model):
self.config = config
self.model_manager = ModelManager()
self.code_architect = CodeArchitect(self.model_manager, model)
self.uiux_wizard = UIUXWizard(self.model_manager)
self.version_control = VersionControl(config["version_control_system"])
self.documentation = Documentation(config["documentation_system"])
self.build_automation = BuildAutomation(config["build_automation_system"])
self.task_queue = asyncio.Queue()
async def start(self):
await self.code_architect.start()
await self.uiux_wizard.start()
await self.version_control.start()
await self.documentation.start()
await self.build_automation.start()
async def stop(self):
await self.code_architect.stop()
await self.uiux_wizard.stop()
await self.version_control.stop()
await self.documentation.stop()
await self.build_automation.stop()
async def process_task(self, task: Task):
if task.task_name == "generate_code":
response = await self.code_architect.generate_code(task.input_data)
return response
elif task.task_name == "get_memory_response":
response = self.uiux_wizard.get_memory_response(task.input_data)
return response
elif task.task_name == "get_conversation_response":
response = self.uiux_wizard.get_conversation_response(task.input_data)
return response
else:
return f"Unknown task: {task.task_name}"
async def process_tasks(self):
while True:
task = await self.task_queue.get()
response = await self.process_task(task)
logging.info(f"Processed task: {task.task_name} for agent: {task.agent_name}")
self.task_queue.task_done()
yield response
def route_request(self, query: str) -> str:
# TODO: Implement logic to determine the appropriate agent based on query
# For now, assume all requests are for the UIUXWizard
return self.uiux_wizard.get_conversation_response(query)
# Flask App for handling agent requests
app = Flask(__name__)
@app.route('/agent', methods=['POST'])
def agent_request():
data = request.get_json()
if data.get('input_value'):
# Process request from any agent (Agent 2, Agent 3, etc.)
task = Task(f"Process request from {data.get('agent_name', 'unknown agent')}", data.get('input_value'), data.get('agent_name', 'unknown agent'))
cluster.task_queue.put_nowait(task)
return jsonify({'response': 'Received input: from an agent, task added to queue.'})
else:
return jsonify({'response': 'Invalid input'})
# Chat Interface
def get_response(query: str) -> str:
return cluster.route_request(query)
def response_streaming(text: str):
try:
for char in text:
yield char
except Exception as e:
logging.error(f"Error in response streaming: {e}")
yield "Error occurred while streaming the response."
class ChatApp:
def __init__(self, cluster: EliteDeveloperCluster):
self.cluster = cluster
async def start(self):
await self.cluster.start()
async def stop(self):
await self.cluster.stop()
async def handle_request(self, query: str) -> str:
response = await self.cluster.process_tasks()
return response
# Configuration
config = {
"version_control_system": "Git",
"testing_framework": "PyTest",
"documentation_system": "Sphinx",
"build_automation_system": "Jenkins",
"redis_host": "localhost",
"redis_port": 6379,
"max_workers": 4,
}
if __name__ == "__main__":
# Initialize the cluster
cluster = EliteDeveloperCluster(config, model=None)
# Start the cluster and task processing loop
asyncio.run(cluster.start())
asyncio.run(cluster.process_tasks())
# Run Flask app
app.run(debug=True)
|