File size: 19,425 Bytes
2582b22
 
7c69181
 
 
2582b22
7c69181
 
 
 
 
 
 
 
2582b22
 
3b88143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c69181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19627c4
7c69181
 
 
 
 
 
3b88143
7c69181
 
 
3b88143
 
 
7c69181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b88143
 
 
 
 
 
 
 
 
 
 
 
7c69181
 
 
 
3b88143
7c69181
 
3b88143
 
 
7c69181
 
3b88143
7c69181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b88143
 
 
 
 
 
7c69181
 
 
 
 
 
 
 
 
19627c4
7c69181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19627c4
7c69181
 
2582b22
7c69181
 
 
7e568ab
7c69181
 
 
 
 
 
afe9aee
 
7c69181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b88143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c69181
 
 
 
 
 
 
 
afe9aee
7c69181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19627c4
7c69181
 
 
 
 
 
 
3b88143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c69181
 
19627c4
7c69181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19627c4
7c69181
 
 
3b88143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c69181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afe9aee
7c69181
afe9aee
7c69181
 
 
 
 
 
 
2582b22
7c69181
 
0717322
7c69181
 
 
 
 
 
19627c4
7c69181
7e568ab
7c69181
7e568ab
7c69181
 
 
 
 
 
 
7e568ab
7c69181
0717322
7c69181
 
 
 
 
0717322
7c69181
 
 
 
3b88143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c69181
 
 
 
 
 
 
 
3b88143
 
7c69181
 
 
 
 
3b88143
 
 
7c69181
3b88143
 
 
 
 
 
 
 
 
 
7c69181
3b88143
 
 
 
 
 
 
 
 
7c69181
 
3b88143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import gradio as gr
import json
import logging
from enum import Enum, auto
from typing import Protocol, List, Dict, Any
from dataclasses import dataclass, field
from datetime import datetime
import difflib
import pytest
from concurrent.futures import ThreadPoolExecutor
import asyncio

# Initialize logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@dataclass
class Config:
    """Configuration class for the agent system"""
    rag_system_path: str
    max_workers: int = 10
    log_level: str = "INFO"
    model_settings: Dict[str, Any] = field(default_factory=dict)
    api_keys: Dict[str, str] = field(default_factory=dict)

    def __post_init__(self):
        """Validate configuration after initialization"""
        if not hasattr(self, 'rag_system_path'):
            raise ValueError("RAG system path must be specified in config")

class RAGSystem:
    """Retrieval Augmented Generation System"""
    def __init__(self, config: Config):
        self.config = config
        self.model_settings = config.model_settings

    async def generate_reasoning(self, prompt: str) -> str:
        """Generate reasoning based on the provided prompt"""
        try:
            # Placeholder for actual RAG implementation
            return f"Generated reasoning for: {prompt}"
        except Exception as e:
            logger.error(f"Error in RAG system: {e}")
            raise

class AgentRole(Enum):
    ARCHITECT = auto()
    FRONTEND = auto()
    BACKEND = auto()
    DATABASE = auto()
    TESTER = auto()
    REVIEWER = auto()
    DEPLOYER = auto()

@dataclass
class AgentDecision:
    agent: 'Agent'
    decision: str
    confidence: float
    reasoning: str
    timestamp: datetime = field(default_factory=datetime.now)
    dependencies: List['AgentDecision'] = field(default_factory=list)

class AgentProtocol(Protocol):
    async def decide(self, context: Dict[str, Any]) -> AgentDecision: ...
    async def validate(self, decision: AgentDecision) -> bool: ...
    async def implement(self, decision: AgentDecision) -> Any: ...
    async def test(self, implementation: Any) -> bool: ...

@dataclass
class Agent:
    role: AgentRole
    name: str
    autonomy_level: float  # 0-10
    expertise: List[str]
    confidence_threshold: float = 0.7
    rag_system: RAGSystem = None

    async def reason(self, context: Dict[str, Any]) -> str:
        """Generate reasoning based on context and expertise"""
        if not self.rag_system:
            raise ValueError("RAG system not initialized")
            
        prompt = f"""
        As {self.name}, a {self.role.name} expert with expertise in {', '.join(self.expertise)},
        analyze the following context and provide reasoning:

        Context:
        {json.dumps(context, indent=2)}

        Consider:
        1. Required components and their interactions
        2. Potential challenges and solutions
        3. Best practices and patterns
        4. Security and performance implications

        Reasoning:
        """
        return await self.rag_system.generate_reasoning(prompt)

    async def decide(self, context: Dict[str, Any]) -> AgentDecision:
        """Make a decision based on context and expertise"""
        reasoning = await self.reason(context)
        confidence = 0.8  # Placeholder for actual confidence calculation
        
        return AgentDecision(
            agent=self,
            decision=f"Decision based on {reasoning}",
            confidence=confidence,
            reasoning=reasoning
        )

class AgentSystem:
    def __init__(self, config: Config):
        self.config = config
        self.autonomy_level = 0.0  # 0-10
        self.rag_system = RAGSystem(config)
        self.agents: Dict[AgentRole, Agent] = self._initialize_agents()
        self.decision_history: List[AgentDecision] = []
        self.executor = ThreadPoolExecutor(max_workers=config.max_workers)
        self.validator = AgentValidator()
        self.tester = AgentTester()

    def _initialize_agents(self) -> Dict[AgentRole, Agent]:
        agents = {
            AgentRole.ARCHITECT: Agent(
                role=AgentRole.ARCHITECT,
                name="System Architect",
                autonomy_level=self.autonomy_level,
                expertise=["system design", "architecture patterns", "integration"]
            ),
            AgentRole.FRONTEND: Agent(
                role=AgentRole.FRONTEND,
                name="Frontend Developer",
                autonomy_level=self.autonomy_level,
                expertise=["UI/UX", "React", "Vue", "Angular"]
            ),
            AgentRole.BACKEND: Agent(
                role=AgentRole.BACKEND,
                name="Backend Developer",
                autonomy_level=self.autonomy_level,
                expertise=["API design", "database", "security"]
            ),
            AgentRole.TESTER: Agent(
                role=AgentRole.TESTER,
                name="Quality Assurance",
                autonomy_level=self.autonomy_level,
                expertise=["testing", "automation", "quality assurance"]
            ),
            AgentRole.REVIEWER: Agent(
                role=AgentRole.REVIEWER,
                name="Code Reviewer",
                autonomy_level=self.autonomy_level,
                expertise=["code quality", "best practices", "security"]
            ),
        }
        
        # Initialize RAG system for each agent
        for agent in agents.values():
            agent.rag_system = self.rag_system
            
        return agents

    async def set_autonomy_level(self, level: float) -> None:
        """Update autonomy level for all agents"""
        self.autonomy_level = max(0.0, min(10.0, level))
        for agent in self.agents.values():
            agent.autonomy_level = self.autonomy_level

    async def process_request(self, description: str, context: Dict[str, Any] = None) -> Dict[str, Any]:
        """Process a user request with current autonomy level"""
        try:
            context = context or {}
            context['description'] = description
            context['autonomy_level'] = self.autonomy_level

            # Start with architect's decision
            arch_decision = await self.agents[AgentRole.ARCHITECT].decide(context)
            self.decision_history.append(arch_decision)

            if self.autonomy_level < 3:
                # Low autonomy: Wait for user confirmation
                return {
                    'status': 'pending_confirmation',
                    'decision': arch_decision,
                    'next_steps': self._get_next_steps(arch_decision)
                }

            # Medium to high autonomy: Proceed with implementation
            implementation_plan = await self._create_implementation_plan(arch_decision)

            if self.autonomy_level >= 7:
                # High autonomy: Automatic implementation and testing
                return await self._automated_implementation(implementation_plan)

            # Medium autonomy: Return plan for user review
            return {
                'status': 'pending_review',
                'plan': implementation_plan,
                'decisions': self.decision_history
            }

        except Exception as e:
            logger.error(f"Error in request processing: {e}")
            return {'status': 'error', 'message': str(e)}

    async def _create_implementation_plan(self, arch_decision: AgentDecision) -> Dict[str, Any]:
        """Create detailed implementation plan based on architect's decision"""
        tasks = []

        # Frontend tasks
        if 'frontend' in arch_decision.decision.lower():
            tasks.append(self._create_frontend_tasks(arch_decision))

        # Backend tasks
        if 'backend' in arch_decision.decision.lower():
            tasks.append(self._create_backend_tasks(arch_decision))

        # Testing tasks
        tasks.append(self._create_testing_tasks(arch_decision))

        return {
            'tasks': await asyncio.gather(*tasks),
            'dependencies': arch_decision.dependencies,
            'estimated_time': self._estimate_implementation_time(tasks)
        }

    async def _create_frontend_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]:
        """Create frontend implementation tasks"""
        return {
            'type': 'frontend',
            'components': [],  # Add component definitions
            'dependencies': arch_decision.dependencies
        }

    async def _create_backend_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]:
        """Create backend implementation tasks"""
        return {
            'type': 'backend',
            'endpoints': [],  # Add endpoint definitions
            'dependencies': arch_decision.dependencies
        }

    async def _create_testing_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]:
        """Create testing tasks"""
        return {
            'type': 'testing',
            'test_cases': [],  # Add test case definitions
            'dependencies': arch_decision.dependencies
        }

    def _estimate_implementation_time(self, tasks: List[Dict[str, Any]]) -> float:
        """Estimate implementation time based on tasks"""
        return sum(len(task.get('components', [])) + len(task.get('endpoints', [])) 
                  for task in tasks) * 2.0  # hours per task

    async def _automated_implementation(self, plan: Dict[str, Any]) -> Dict[str, Any]:
        """Execute implementation plan automatically"""
        results = {
            'frontend': None,
            'backend': None,
            'tests': None,
            'review': None
        }

        try:
            # Parallel implementation of frontend and backend
            impl_tasks = []
            if 'frontend' in plan['tasks']:
                impl_tasks.append(self._implement_frontend(plan['tasks']['frontend']))
            if 'backend' in plan['tasks']:
                impl_tasks.append(self._implement_backend(plan['tasks']['backend']))

            implementations = await asyncio.gather(*impl_tasks)

            # Testing
            test_results = await self.agents[AgentRole.TESTER].test(implementations)

            # Code review
            review_results = await self.agents[AgentRole.REVIEWER].validate({
                'implementations': implementations,
                'test_results': test_results
            })

            return {
                'status': 'completed',
                'implementations': implementations,
                'test_results': test_results,
                'review': review_results,
                'decisions': self.decision_history
            }

        except Exception as e:
            return {
                'status': 'error',
                'message': str(e),
                'partial_results': results
            }

    async def _implement_frontend(self, tasks: Dict[str, Any]) -> Dict[str, Any]:
        """Implement frontend components"""
        return {'components': [], 'status': 'implemented'}

    async def _implement_backend(self, tasks: Dict[str, Any]) -> Dict[str, Any]:
        """Implement backend components"""
        return {'endpoints': [], 'status': 'implemented'}

    def _get_next_steps(self, decision: AgentDecision) -> List[str]:
        """Get next steps based on decision"""
        return [
            f"Review {decision.decision}",
            "Provide feedback on the proposed approach",
            "Approve or request changes"
        ]

    async def _handle_implementation_failure(self, error: Exception, context: Dict[str, Any]) -> Dict[str, Any]:
        """Handle implementation failures with adaptive response"""
        try:
            # Analyze error
            error_analysis = await self.agents[AgentRole.REVIEWER].reason({
                'error': str(error),
                'context': context
            })

            # Determine correction strategy
            if self.autonomy_level >= 8:
                # High autonomy: Attempt automatic correction
                correction = await self._attempt_automatic_correction(error_analysis)
                if correction['success']:
                    return await self.process_request(context['description'], correction['context'])

            return {
                'status': 'failure',
                'error': str(error),
                'analysis': error_analysis,
                'suggested_corrections': self._suggest_corrections(error_analysis)
            }

        except Exception as e:
            logger.error(f"Error handling implementation failure: {e}")
            return {'status': 'critical_error', 'message': str(e)}

    async def _attempt_automatic_correction(self, error_analysis: Dict[str, Any]) -> Dict[str, Any]:
        """Attempt to automatically correct implementation issues"""
        return {
            'success': False,
            'context': {},
            'message': 'Automatic correction not implemented'
        }

    def _suggest_corrections(self, error_analysis: Dict[str, Any]) -> List[str]:
        """Generate suggested corrections based on error analysis"""
        return [
            "Review error details",
            "Check implementation requirements",
            "Verify dependencies"
        ]

class AgentTester:
    def __init__(self):
        self.test_suites = {
            'frontend': self._test_frontend,
            'backend': self._test_backend,
            'integration': self._test_integration
        }

    async def _test_frontend(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
        """Run frontend tests"""
        results = {
            'passed': [],
            'failed': [],
            'warnings': []
        }

        # Component rendering tests
        for component in implementation.get('components', []):
            try:
                # Test component rendering
                result = await self._test_component_render(component)
                if result['success']:
                    results['passed'].append(f"Component {component['name']} renders correctly")
                else:
                    results['failed'].append(f"Component {component['name']}: {result['error']}")
            except Exception as e:
                results['failed'].append(f"Error testing {component['name']}: {str(e)}")

        return results

    async def _test_backend(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
        """Run backend tests"""
        results = {
            'passed': [],
            'failed': [],
            'warnings': []
        }

        # API endpoint tests
        for endpoint in implementation.get('endpoints', []):
            try:
                # Test endpoint functionality
                result = await self._test_endpoint(endpoint)
                if result['success']:
                    results['passed'].append(f"Endpoint {endpoint['path']} works correctly")
                else:
                    results['failed'].append(f"Endpoint {endpoint['path']}: {result['error']}")
            except Exception as e:
                results['failed'].append(f"Error testing {endpoint['path']}: {str(e)}")

        return results

    async def _test_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
        """Run integration tests"""
        results = {
            'passed': [],
            'failed': [],
            'warnings': []
        }

        # Test frontend-backend integration
        try:
            result = await self._test_frontend_backend_integration(implementation)
            if result['success']:
                results['passed'].append("Frontend-Backend integration successful")
            else:
                results['failed'].append(f"Integration error: {result['error']}")
        except Exception as e:
            results['failed'].append(f"Integration test error: {str(e)}")

        return results

    async def _test_component_render(self, component: Dict[str, Any]) -> Dict[str, Any]:
        """Test component rendering"""
        # Placeholder for actual component rendering test
        return {'success': True, 'error': None}

    async def _test_endpoint(self, endpoint: Dict[str, Any]) -> Dict[str, Any]:
        """Test endpoint functionality"""
        # Placeholder for actual endpoint test
        return {'success': True, 'error': None}

    async def _test_component_render(self, component: Dict[str, Any]) -> Dict[str, Any]:
        """Test component rendering"""
        # Placeholder for actual component rendering test
        return {'success': True, 'error': None}

    async def _test_endpoint(self, endpoint: Dict[str, Any]) -> Dict[str, Any]:
        """Test endpoint functionality"""
        # Placeholder for actual endpoint test
        return {'success': True, 'error': None}

        async def _test_frontend_backend_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
        """Test frontend-backend integration"""
        # Placeholder for actual integration test
        return {'success': True, 'error': None}


class AgentValidator:
    def __init__(self):
        self.validators = {
            'code_quality': self._validate_code_quality,
            'security': self._validate_security,
            'performance': self._validate_performance
        }

    async def _validate_code_quality(self, code: str) -> Dict[str, Any]:
        """Validate code quality metrics"""
        results = {
            'passed': [],
            'failed': [],
            'warnings': []
        }
        
        # Add code quality validation logic here
        return results

    async def _validate_security(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
        """Validate security best practices"""
        results = {
            'passed': [],
            'failed': [],
            'warnings': []
        }
        
        # Add security validation logic here
        return results

    async def _validate_performance(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
        """Validate performance metrics"""
        results = {
            'passed': [],
            'failed': [],
            'warnings': []
        }
        
        # Add performance validation logic here
        return results

    async def validate(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
        """Run all validators on the implementation"""
        results = {
            'code_quality': await self._validate_code_quality(implementation.get('code', '')),
            'security': await self._validate_security(implementation),
            'performance': await self._validate_performance(implementation)
        }
        return results


# Example usage
if __name__ == "__main__":
    async def main():
        config = Config(
            rag_system_path="/path/to/rag",
            max_workers=10,
            log_level="INFO",
            model_settings={},
            api_keys={}
        )

        agent_system = AgentSystem(config)
        await agent_system.set_autonomy_level(5.0)

        result = await agent_system.process_request(
            description="Create a new web application",
            context={"requirements": ["user authentication", "dashboard", "API"]}
        )
        print(json.dumps(result, indent=2))

    # Run the async main function
    asyncio.run(main())