Spaces:
Runtime error
Runtime error
File size: 19,425 Bytes
2582b22 7c69181 2582b22 7c69181 2582b22 3b88143 7c69181 19627c4 7c69181 3b88143 7c69181 3b88143 7c69181 3b88143 7c69181 3b88143 7c69181 3b88143 7c69181 3b88143 7c69181 3b88143 7c69181 19627c4 7c69181 19627c4 7c69181 2582b22 7c69181 7e568ab 7c69181 afe9aee 7c69181 3b88143 7c69181 afe9aee 7c69181 19627c4 7c69181 3b88143 7c69181 19627c4 7c69181 19627c4 7c69181 3b88143 7c69181 afe9aee 7c69181 afe9aee 7c69181 2582b22 7c69181 0717322 7c69181 19627c4 7c69181 7e568ab 7c69181 7e568ab 7c69181 7e568ab 7c69181 0717322 7c69181 0717322 7c69181 3b88143 7c69181 3b88143 7c69181 3b88143 7c69181 3b88143 7c69181 3b88143 7c69181 3b88143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import gradio as gr
import json
import logging
from enum import Enum, auto
from typing import Protocol, List, Dict, Any
from dataclasses import dataclass, field
from datetime import datetime
import difflib
import pytest
from concurrent.futures import ThreadPoolExecutor
import asyncio
# Initialize logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class Config:
"""Configuration class for the agent system"""
rag_system_path: str
max_workers: int = 10
log_level: str = "INFO"
model_settings: Dict[str, Any] = field(default_factory=dict)
api_keys: Dict[str, str] = field(default_factory=dict)
def __post_init__(self):
"""Validate configuration after initialization"""
if not hasattr(self, 'rag_system_path'):
raise ValueError("RAG system path must be specified in config")
class RAGSystem:
"""Retrieval Augmented Generation System"""
def __init__(self, config: Config):
self.config = config
self.model_settings = config.model_settings
async def generate_reasoning(self, prompt: str) -> str:
"""Generate reasoning based on the provided prompt"""
try:
# Placeholder for actual RAG implementation
return f"Generated reasoning for: {prompt}"
except Exception as e:
logger.error(f"Error in RAG system: {e}")
raise
class AgentRole(Enum):
ARCHITECT = auto()
FRONTEND = auto()
BACKEND = auto()
DATABASE = auto()
TESTER = auto()
REVIEWER = auto()
DEPLOYER = auto()
@dataclass
class AgentDecision:
agent: 'Agent'
decision: str
confidence: float
reasoning: str
timestamp: datetime = field(default_factory=datetime.now)
dependencies: List['AgentDecision'] = field(default_factory=list)
class AgentProtocol(Protocol):
async def decide(self, context: Dict[str, Any]) -> AgentDecision: ...
async def validate(self, decision: AgentDecision) -> bool: ...
async def implement(self, decision: AgentDecision) -> Any: ...
async def test(self, implementation: Any) -> bool: ...
@dataclass
class Agent:
role: AgentRole
name: str
autonomy_level: float # 0-10
expertise: List[str]
confidence_threshold: float = 0.7
rag_system: RAGSystem = None
async def reason(self, context: Dict[str, Any]) -> str:
"""Generate reasoning based on context and expertise"""
if not self.rag_system:
raise ValueError("RAG system not initialized")
prompt = f"""
As {self.name}, a {self.role.name} expert with expertise in {', '.join(self.expertise)},
analyze the following context and provide reasoning:
Context:
{json.dumps(context, indent=2)}
Consider:
1. Required components and their interactions
2. Potential challenges and solutions
3. Best practices and patterns
4. Security and performance implications
Reasoning:
"""
return await self.rag_system.generate_reasoning(prompt)
async def decide(self, context: Dict[str, Any]) -> AgentDecision:
"""Make a decision based on context and expertise"""
reasoning = await self.reason(context)
confidence = 0.8 # Placeholder for actual confidence calculation
return AgentDecision(
agent=self,
decision=f"Decision based on {reasoning}",
confidence=confidence,
reasoning=reasoning
)
class AgentSystem:
def __init__(self, config: Config):
self.config = config
self.autonomy_level = 0.0 # 0-10
self.rag_system = RAGSystem(config)
self.agents: Dict[AgentRole, Agent] = self._initialize_agents()
self.decision_history: List[AgentDecision] = []
self.executor = ThreadPoolExecutor(max_workers=config.max_workers)
self.validator = AgentValidator()
self.tester = AgentTester()
def _initialize_agents(self) -> Dict[AgentRole, Agent]:
agents = {
AgentRole.ARCHITECT: Agent(
role=AgentRole.ARCHITECT,
name="System Architect",
autonomy_level=self.autonomy_level,
expertise=["system design", "architecture patterns", "integration"]
),
AgentRole.FRONTEND: Agent(
role=AgentRole.FRONTEND,
name="Frontend Developer",
autonomy_level=self.autonomy_level,
expertise=["UI/UX", "React", "Vue", "Angular"]
),
AgentRole.BACKEND: Agent(
role=AgentRole.BACKEND,
name="Backend Developer",
autonomy_level=self.autonomy_level,
expertise=["API design", "database", "security"]
),
AgentRole.TESTER: Agent(
role=AgentRole.TESTER,
name="Quality Assurance",
autonomy_level=self.autonomy_level,
expertise=["testing", "automation", "quality assurance"]
),
AgentRole.REVIEWER: Agent(
role=AgentRole.REVIEWER,
name="Code Reviewer",
autonomy_level=self.autonomy_level,
expertise=["code quality", "best practices", "security"]
),
}
# Initialize RAG system for each agent
for agent in agents.values():
agent.rag_system = self.rag_system
return agents
async def set_autonomy_level(self, level: float) -> None:
"""Update autonomy level for all agents"""
self.autonomy_level = max(0.0, min(10.0, level))
for agent in self.agents.values():
agent.autonomy_level = self.autonomy_level
async def process_request(self, description: str, context: Dict[str, Any] = None) -> Dict[str, Any]:
"""Process a user request with current autonomy level"""
try:
context = context or {}
context['description'] = description
context['autonomy_level'] = self.autonomy_level
# Start with architect's decision
arch_decision = await self.agents[AgentRole.ARCHITECT].decide(context)
self.decision_history.append(arch_decision)
if self.autonomy_level < 3:
# Low autonomy: Wait for user confirmation
return {
'status': 'pending_confirmation',
'decision': arch_decision,
'next_steps': self._get_next_steps(arch_decision)
}
# Medium to high autonomy: Proceed with implementation
implementation_plan = await self._create_implementation_plan(arch_decision)
if self.autonomy_level >= 7:
# High autonomy: Automatic implementation and testing
return await self._automated_implementation(implementation_plan)
# Medium autonomy: Return plan for user review
return {
'status': 'pending_review',
'plan': implementation_plan,
'decisions': self.decision_history
}
except Exception as e:
logger.error(f"Error in request processing: {e}")
return {'status': 'error', 'message': str(e)}
async def _create_implementation_plan(self, arch_decision: AgentDecision) -> Dict[str, Any]:
"""Create detailed implementation plan based on architect's decision"""
tasks = []
# Frontend tasks
if 'frontend' in arch_decision.decision.lower():
tasks.append(self._create_frontend_tasks(arch_decision))
# Backend tasks
if 'backend' in arch_decision.decision.lower():
tasks.append(self._create_backend_tasks(arch_decision))
# Testing tasks
tasks.append(self._create_testing_tasks(arch_decision))
return {
'tasks': await asyncio.gather(*tasks),
'dependencies': arch_decision.dependencies,
'estimated_time': self._estimate_implementation_time(tasks)
}
async def _create_frontend_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]:
"""Create frontend implementation tasks"""
return {
'type': 'frontend',
'components': [], # Add component definitions
'dependencies': arch_decision.dependencies
}
async def _create_backend_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]:
"""Create backend implementation tasks"""
return {
'type': 'backend',
'endpoints': [], # Add endpoint definitions
'dependencies': arch_decision.dependencies
}
async def _create_testing_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]:
"""Create testing tasks"""
return {
'type': 'testing',
'test_cases': [], # Add test case definitions
'dependencies': arch_decision.dependencies
}
def _estimate_implementation_time(self, tasks: List[Dict[str, Any]]) -> float:
"""Estimate implementation time based on tasks"""
return sum(len(task.get('components', [])) + len(task.get('endpoints', []))
for task in tasks) * 2.0 # hours per task
async def _automated_implementation(self, plan: Dict[str, Any]) -> Dict[str, Any]:
"""Execute implementation plan automatically"""
results = {
'frontend': None,
'backend': None,
'tests': None,
'review': None
}
try:
# Parallel implementation of frontend and backend
impl_tasks = []
if 'frontend' in plan['tasks']:
impl_tasks.append(self._implement_frontend(plan['tasks']['frontend']))
if 'backend' in plan['tasks']:
impl_tasks.append(self._implement_backend(plan['tasks']['backend']))
implementations = await asyncio.gather(*impl_tasks)
# Testing
test_results = await self.agents[AgentRole.TESTER].test(implementations)
# Code review
review_results = await self.agents[AgentRole.REVIEWER].validate({
'implementations': implementations,
'test_results': test_results
})
return {
'status': 'completed',
'implementations': implementations,
'test_results': test_results,
'review': review_results,
'decisions': self.decision_history
}
except Exception as e:
return {
'status': 'error',
'message': str(e),
'partial_results': results
}
async def _implement_frontend(self, tasks: Dict[str, Any]) -> Dict[str, Any]:
"""Implement frontend components"""
return {'components': [], 'status': 'implemented'}
async def _implement_backend(self, tasks: Dict[str, Any]) -> Dict[str, Any]:
"""Implement backend components"""
return {'endpoints': [], 'status': 'implemented'}
def _get_next_steps(self, decision: AgentDecision) -> List[str]:
"""Get next steps based on decision"""
return [
f"Review {decision.decision}",
"Provide feedback on the proposed approach",
"Approve or request changes"
]
async def _handle_implementation_failure(self, error: Exception, context: Dict[str, Any]) -> Dict[str, Any]:
"""Handle implementation failures with adaptive response"""
try:
# Analyze error
error_analysis = await self.agents[AgentRole.REVIEWER].reason({
'error': str(error),
'context': context
})
# Determine correction strategy
if self.autonomy_level >= 8:
# High autonomy: Attempt automatic correction
correction = await self._attempt_automatic_correction(error_analysis)
if correction['success']:
return await self.process_request(context['description'], correction['context'])
return {
'status': 'failure',
'error': str(error),
'analysis': error_analysis,
'suggested_corrections': self._suggest_corrections(error_analysis)
}
except Exception as e:
logger.error(f"Error handling implementation failure: {e}")
return {'status': 'critical_error', 'message': str(e)}
async def _attempt_automatic_correction(self, error_analysis: Dict[str, Any]) -> Dict[str, Any]:
"""Attempt to automatically correct implementation issues"""
return {
'success': False,
'context': {},
'message': 'Automatic correction not implemented'
}
def _suggest_corrections(self, error_analysis: Dict[str, Any]) -> List[str]:
"""Generate suggested corrections based on error analysis"""
return [
"Review error details",
"Check implementation requirements",
"Verify dependencies"
]
class AgentTester:
def __init__(self):
self.test_suites = {
'frontend': self._test_frontend,
'backend': self._test_backend,
'integration': self._test_integration
}
async def _test_frontend(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
"""Run frontend tests"""
results = {
'passed': [],
'failed': [],
'warnings': []
}
# Component rendering tests
for component in implementation.get('components', []):
try:
# Test component rendering
result = await self._test_component_render(component)
if result['success']:
results['passed'].append(f"Component {component['name']} renders correctly")
else:
results['failed'].append(f"Component {component['name']}: {result['error']}")
except Exception as e:
results['failed'].append(f"Error testing {component['name']}: {str(e)}")
return results
async def _test_backend(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
"""Run backend tests"""
results = {
'passed': [],
'failed': [],
'warnings': []
}
# API endpoint tests
for endpoint in implementation.get('endpoints', []):
try:
# Test endpoint functionality
result = await self._test_endpoint(endpoint)
if result['success']:
results['passed'].append(f"Endpoint {endpoint['path']} works correctly")
else:
results['failed'].append(f"Endpoint {endpoint['path']}: {result['error']}")
except Exception as e:
results['failed'].append(f"Error testing {endpoint['path']}: {str(e)}")
return results
async def _test_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
"""Run integration tests"""
results = {
'passed': [],
'failed': [],
'warnings': []
}
# Test frontend-backend integration
try:
result = await self._test_frontend_backend_integration(implementation)
if result['success']:
results['passed'].append("Frontend-Backend integration successful")
else:
results['failed'].append(f"Integration error: {result['error']}")
except Exception as e:
results['failed'].append(f"Integration test error: {str(e)}")
return results
async def _test_component_render(self, component: Dict[str, Any]) -> Dict[str, Any]:
"""Test component rendering"""
# Placeholder for actual component rendering test
return {'success': True, 'error': None}
async def _test_endpoint(self, endpoint: Dict[str, Any]) -> Dict[str, Any]:
"""Test endpoint functionality"""
# Placeholder for actual endpoint test
return {'success': True, 'error': None}
async def _test_component_render(self, component: Dict[str, Any]) -> Dict[str, Any]:
"""Test component rendering"""
# Placeholder for actual component rendering test
return {'success': True, 'error': None}
async def _test_endpoint(self, endpoint: Dict[str, Any]) -> Dict[str, Any]:
"""Test endpoint functionality"""
# Placeholder for actual endpoint test
return {'success': True, 'error': None}
async def _test_frontend_backend_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
"""Test frontend-backend integration"""
# Placeholder for actual integration test
return {'success': True, 'error': None}
class AgentValidator:
def __init__(self):
self.validators = {
'code_quality': self._validate_code_quality,
'security': self._validate_security,
'performance': self._validate_performance
}
async def _validate_code_quality(self, code: str) -> Dict[str, Any]:
"""Validate code quality metrics"""
results = {
'passed': [],
'failed': [],
'warnings': []
}
# Add code quality validation logic here
return results
async def _validate_security(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
"""Validate security best practices"""
results = {
'passed': [],
'failed': [],
'warnings': []
}
# Add security validation logic here
return results
async def _validate_performance(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
"""Validate performance metrics"""
results = {
'passed': [],
'failed': [],
'warnings': []
}
# Add performance validation logic here
return results
async def validate(self, implementation: Dict[str, Any]) -> Dict[str, Any]:
"""Run all validators on the implementation"""
results = {
'code_quality': await self._validate_code_quality(implementation.get('code', '')),
'security': await self._validate_security(implementation),
'performance': await self._validate_performance(implementation)
}
return results
# Example usage
if __name__ == "__main__":
async def main():
config = Config(
rag_system_path="/path/to/rag",
max_workers=10,
log_level="INFO",
model_settings={},
api_keys={}
)
agent_system = AgentSystem(config)
await agent_system.set_autonomy_level(5.0)
result = await agent_system.process_request(
description="Create a new web application",
context={"requirements": ["user authentication", "dashboard", "API"]}
)
print(json.dumps(result, indent=2))
# Run the async main function
asyncio.run(main()) |