Spaces:
Runtime error
Runtime error
File size: 41,105 Bytes
3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 |
import threading
import time
import gradio as gr
import logging
import json
import re
import torch
import tempfile
import subprocess
import ast
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Any, Union
from dataclasses import dataclass, field
from enum import Enum
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
AutoModel
)
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
from PIL import Image
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('gradio_builder.log')
]
)
logger = logging.getLogger(__name__)
# Constants
DEFAULT_PORT = 7860
MODEL_CACHE_DIR = Path("model_cache")
TEMPLATE_DIR = Path("templates")
TEMP_DIR = Path("temp")
# Ensure directories exist
for directory in [MODEL_CACHE_DIR, TEMPLATE_DIR, TEMP_DIR]:
directory.mkdir(exist_ok=True)
@dataclass
class Template:
"""Template data structure"""
code: str
description: str
components: List[str]
metadata: Dict[str, Any] = field(default_factory=dict)
version: str = "1.0"
class ComponentType(Enum):
"""Supported Gradio component types"""
IMAGE = "Image"
TEXTBOX = "Textbox"
BUTTON = "Button"
NUMBER = "Number"
MARKDOWN = "Markdown"
JSON = "JSON"
HTML = "HTML"
CODE = "Code"
DROPDOWN = "Dropdown"
SLIDER = "Slider"
CHECKBOX = "Checkbox"
RADIO = "Radio"
AUDIO = "Audio"
VIDEO = "Video"
FILE = "File"
DATAFRAME = "DataFrame"
LABEL = "Label"
PLOT = "Plot"
@dataclass
class ComponentConfig:
"""Configuration for Gradio components"""
type: ComponentType
label: str
properties: Dict[str, Any] = field(default_factory=dict)
events: List[str] = field(default_factory=list)
class BuilderError(Exception):
"""Base exception for Gradio Builder errors"""
pass
class ValidationError(BuilderError):
"""Raised when validation fails"""
pass
class GenerationError(BuilderError):
"""Raised when code generation fails"""
pass
class ModelError(BuilderError):
"""Raised when model operations fail"""
pass
def setup_gpu_memory():
"""Configure GPU memory usage"""
try:
if torch.cuda.is_available():
# Enable memory growth
torch.cuda.empty_cache()
# Set memory fraction
torch.cuda.set_per_process_memory_fraction(0.8)
logger.info("GPU memory configured successfully")
else:
logger.info("No GPU available, using CPU")
except Exception as e:
logger.warning(f"Error configuring GPU memory: {e}")
def validate_code(code: str) -> Tuple[bool, str]:
"""Validate Python code syntax"""
try:
ast.parse(code)
return True, "Code is valid"
except SyntaxError as e:
line_no = e.lineno
offset = e.offset
line = e.text
if line:
pointer = " " * (offset - 1) + "^"
error_detail = f"\nLine {line_no}:\n{line}\n{pointer}"
else:
error_detail = f" at line {line_no}"
return False, f"Syntax error: {str(e)}{error_detail}"
except Exception as e:
return False, f"Validation error: {str(e)}"
class CodeFormatter:
"""Handles code formatting and cleanup"""
@staticmethod
def format_code(code: str) -> str:
"""Format code using black"""
try:
import black
return black.format_str(code, mode=black.FileMode())
except ImportError:
logger.warning("black not installed, returning unformatted code")
return code
except Exception as e:
logger.error(f"Error formatting code: {e}")
return code
@staticmethod
def cleanup_code(code: str) -> str:
"""Clean up generated code"""
# Remove any potential unsafe imports
unsafe_imports = ['os', 'subprocess', 'sys']
lines = code.split('\n')
cleaned_lines = []
for line in lines:
skip = False
for unsafe in unsafe_imports:
if f"import {unsafe}" in line or f"from {unsafe}" in line:
skip = True
break
if not skip:
cleaned_lines.append(line)
return '\n'.join(cleaned_lines)
def create_temp_module(code: str) -> str:
"""Create a temporary module from code"""
try:
temp_file = TEMP_DIR / f"temp_module_{int(time.time())}.py"
with open(temp_file, "w", encoding="utf-8") as f:
f.write(code)
return str(temp_file)
except Exception as e:
raise BuilderError(f"Failed to create temporary module: {e}")
# Initialize GPU configuration
setup_gpu_memory()
class ModelManager:
"""Manages AI models and their configurations"""
def __init__(self, cache_dir: Path = MODEL_CACHE_DIR):
self.cache_dir = cache_dir
self.cache_dir.mkdir(exist_ok=True)
self.loaded_models = {}
self.model_configs = {
"code_generator": {
"model_id": "bigcode/starcoder",
"tokenizer": AutoTokenizer,
"model": AutoModelForCausalLM,
"kwargs": {
"torch_dtype": torch.float16,
"device_map": "auto",
"cache_dir": str(cache_dir)
}
},
"image_processor": {
"model_id": "Salesforce/blip-image-captioning-base",
"processor": AutoProcessor,
"model": AutoModel,
"kwargs": {
"cache_dir": str(cache_dir)
}
}
}
def load_model(self, model_type: str):
"""Load a model by type"""
try:
if model_type not in self.model_configs:
raise ModelError(f"Unknown model type: {model_type}")
if model_type in self.loaded_models:
return self.loaded_models[model_type]
config = self.model_configs[model_type]
logger.info(f"Loading {model_type} model...")
if model_type == "code_generator":
tokenizer = config["tokenizer"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
model = config["model"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
self.loaded_models[model_type] = (model, tokenizer)
elif model_type == "image_processor":
processor = config["processor"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
model = config["model"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
self.loaded_models[model_type] = (model, processor)
logger.info(f"{model_type} model loaded successfully")
return self.loaded_models[model_type]
except Exception as e:
raise ModelError(f"Error loading {model_type} model: {str(e)}")
def unload_model(self, model_type: str):
"""Unload a model to free memory"""
if model_type in self.loaded_models:
del self.loaded_models[model_type]
torch.cuda.empty_cache()
logger.info(f"{model_type} model unloaded")
class MultimodalRAG:
"""Multimodal Retrieval-Augmented Generation system"""
def __init__(self):
"""Initialize the multimodal RAG system"""
try:
self.model_manager = ModelManager()
# Load text encoder
self.text_encoder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Initialize vector store
self.vector_store = self._initialize_vector_store()
# Load template database
self.template_embeddings = {}
self._initialize_template_embeddings()
except Exception as e:
raise ModelError(f"Error initializing MultimodalRAG: {str(e)}")
def _initialize_vector_store(self) -> faiss.IndexFlatL2:
"""Initialize FAISS vector store"""
combined_dim = 768 + 384 # BLIP (768) + text (384)
return faiss.IndexFlatL2(combined_dim)
def _initialize_template_embeddings(self):
"""Initialize template embeddings"""
try:
template_path = TEMPLATE_DIR / "template_embeddings.npz"
if template_path.exists():
data = np.load(template_path)
self.template_embeddings = {
name: embedding for name, embedding in data.items()
}
except Exception as e:
logger.error(f"Error loading template embeddings: {e}")
def save_template_embeddings(self):
"""Save template embeddings to disk"""
try:
template_path = TEMPLATE_DIR / "template_embeddings.npz"
np.savez(
template_path,
**self.template_embeddings
)
except Exception as e:
logger.error(f"Error saving template embeddings: {e}")
def encode_image(self, image: Image.Image) -> np.ndarray:
"""Encode image using BLIP"""
try:
model, processor = self.model_manager.load_model("image_processor")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
image_features = model.get_image_features(**inputs)
return image_features.detach().numpy()
except Exception as e:
raise ModelError(f"Error encoding image: {str(e)}")
def encode_text(self, text: str) -> np.ndarray:
"""Encode text using sentence-transformers"""
try:
return self.text_encoder.encode(text)
except Exception as e:
raise ModelError(f"Error encoding text: {str(e)}")
def generate_code(self, description: str, template_code: str) -> str:
"""Generate code using StarCoder"""
try:
model, tokenizer = self.model_manager.load_model("code_generator")
prompt = f"""
# Task: Generate a Gradio interface based on the description
# Description: {description}
# Base template:
{template_code}
# Generate a customized version of the template that implements the description.
# Only output the Python code, no explanations.
```python
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=2048,
temperature=0.2,
top_p=0.95,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clean and format the generated code
generated_code = self._clean_generated_code(generated_code)
return CodeFormatter.format_code(generated_code)
except Exception as e:
raise GenerationError(f"Error generating code: {str(e)}")
def _clean_generated_code(self, code: str) -> str:
"""Clean and format generated code"""
# Extract code between triple backticks if present
if "```python" in code:
code = code.split("```python")[1].split("```")[0]
elif "```" in code:
code = code.split("```")[1].split("```")[0]
code = code.strip()
return CodeFormatter.cleanup_code(code)
def find_similar_template(
self,
screenshot: Optional[Image.Image],
description: str
) -> Tuple[str, Template]:
"""Find most similar template based on image and description"""
try:
# Get embeddings
text_embedding = self.encode_text(description)
if screenshot:
img_embedding = self.encode_image(screenshot)
query_embedding = np.concatenate([
img_embedding.flatten(),
text_embedding
])
else:
# If no image, duplicate text embedding to match dimensions
query_embedding = np.concatenate([
text_embedding,
text_embedding
])
# Search in vector store
D, I = self.vector_store.search(
np.array([query_embedding]),
k=1
)
# Get template name from index
template_names = list(self.template_embeddings.keys())
template_name = template_names[I[0][0]]
# Load template
template_path = TEMPLATE_DIR / f"{template_name}.json"
with open(template_path, 'r') as f:
template_data = json.load(f)
template = Template(**template_data)
return template_name, template
except Exception as e:
raise ModelError(f"Error finding similar template: {str(e)}")
def generate_interface(
self,
screenshot: Optional[Image.Image],
description: str
) -> str:
"""Generate complete interface based on input"""
try:
# Find similar template
template_name, template = self.find_similar_template(
screenshot,
description
)
# Generate customized code
custom_code = self.generate_code(
description,
template.code
)
return custom_code
except Exception as e:
raise GenerationError(f"Error generating interface: {str(e)}")
def cleanup(self):
"""Cleanup resources"""
try:
# Save template embeddings
self.save_template_embeddings()
# Unload models
self.model_manager.unload_model("code_generator")
self.model_manager.unload_model("image_processor")
# Clear CUDA cache
torch.cuda.empty_cache()
except Exception as e:
logger.error(f"Error during cleanup: {e}")
class TemplateManager:
"""Manages Gradio interface templates"""
def __init__(self, template_dir: Path = TEMPLATE_DIR):
self.template_dir = template_dir
self.template_dir.mkdir(exist_ok=True)
self.templates: Dict[str, Template] = {}
self.load_templates()
def load_templates(self):
"""Load all templates from directory"""
try:
# Load built-in templates
self.templates.update(self._get_builtin_templates())
# Load custom templates
for template_file in self.template_dir.glob("*.json"):
try:
with open(template_file, 'r', encoding='utf-8') as f:
template_data = json.load(f)
name = template_file.stem
self.templates[name] = Template(**template_data)
except Exception as e:
logger.error(f"Error loading template {template_file}: {e}")
except Exception as e:
logger.error(f"Error loading templates: {e}")
def _get_builtin_templates(self) -> Dict[str, Template]:
"""Get built-in templates"""
return {
"image_classifier": Template(
code="""
import gradio as gr
import numpy as np
from PIL import Image
def classify_image(image):
if image is None:
return {"error": 1.0}
# Add classification logic here
return {"class1": 0.8, "class2": 0.2}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Image Classifier")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
classify_btn = gr.Button("Classify")
with gr.Column():
output_labels = gr.Label()
classify_btn.click(
fn=classify_image,
inputs=input_image,
outputs=output_labels
)
if __name__ == "__main__":
demo.launch()
""",
description="Basic image classification interface",
components=["Image", "Button", "Label"],
metadata={"category": "computer_vision"}
),
"text_analyzer": Template(
code="""
import gradio as gr
import numpy as np
def analyze_text(text, options):
if not text:
return "Please enter some text"
results = []
if "word_count" in options:
results.append(f"Word count: {len(text.split())}")
if "char_count" in options:
results.append(f"Character count: {len(text)}")
if "sentiment" in options:
# Add sentiment analysis logic here
results.append("Sentiment: Neutral")
return "\\n".join(results)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Text Analysis Tool")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text to analyze...",
lines=5
)
options = gr.CheckboxGroup(
choices=["word_count", "char_count", "sentiment"],
label="Analysis Options",
value=["word_count"]
)
analyze_btn = gr.Button("Analyze")
with gr.Column():
output_text = gr.Textbox(
label="Analysis Results",
lines=5
)
analyze_btn.click(
fn=analyze_text,
inputs=[input_text, options],
outputs=output_text
)
if __name__ == "__main__":
demo.launch()
""",
description="Text analysis interface with multiple options",
components=["Textbox", "CheckboxGroup", "Button"],
metadata={"category": "nlp"}
)
}
def save_template(self, name: str, template: Template) -> bool:
"""Save new template"""
try:
template_path = self.template_dir / f"{name}.json"
template_dict = {
"code": template.code,
"description": template.description,
"components": template.components,
"metadata": template.metadata,
"version": template.version
}
with open(template_path, 'w', encoding='utf-8') as f:
json.dump(template_dict, f, indent=4)
self.templates[name] = template
return True
except Exception as e:
logger.error(f"Error saving template {name}: {e}")
return False
def get_template(self, name: str) -> Optional[Template]:
"""Get template by name"""
return self.templates.get(name)
def list_templates(self, category: Optional[str] = None) -> List[Dict[str, Any]]:
"""List all available templates with optional category filter"""
templates_list = []
for name, template in self.templates.items():
if category and template.metadata.get("category") != category:
continue
templates_list.append({
"name": name,
"description": template.description,
"components": template.components,
"category": template.metadata.get("category", "general")
})
return templates_list
class InterfaceAnalyzer:
"""Analyzes Gradio interfaces"""
@staticmethod
def extract_components(code: str) -> List[ComponentConfig]:
"""Extract components from code"""
components = []
try:
tree = ast.parse(code)
for node in ast.walk(tree):
if isinstance(node, ast.Call):
if isinstance(node.func, ast.Attribute):
if hasattr(node.func.value, 'id') and node.func.value.id == 'gr':
component_type = node.func.attr
if hasattr(ComponentType, component_type.upper()):
# Extract component properties
properties = {}
label = None
events = []
# Get properties from keywords
for keyword in node.keywords:
if keyword.arg == 'label':
try:
label = ast.literal_eval(keyword.value)
except:
label = None
else:
try:
properties[keyword.arg] = ast.literal_eval(keyword.value)
except:
properties[keyword.arg] = None
# Look for event handlers
parent = InterfaceAnalyzer._find_parent_assign(tree, node)
if parent:
events = InterfaceAnalyzer._find_component_events(tree, parent)
components.append(ComponentConfig(
type=ComponentType[component_type.upper()],
label=label or component_type,
properties=properties,
events=events
))
except Exception as e:
logger.error(f"Error extracting components: {e}")
return components
@staticmethod
def _find_parent_assign(tree: ast.AST, node: ast.Call) -> Optional[ast.AST]:
"""Find the assignment node for a component"""
for potential_parent in ast.walk(tree):
if isinstance(potential_parent, ast.Assign):
for child in ast.walk(potential_parent.value):
if child == node:
return potential_parent
return None
@staticmethod
def _find_component_events(tree: ast.AST, assign_node: ast.Assign) -> List[str]:
"""Find events attached to a component"""
events = []
component_name = assign_node.targets[0].id
for node in ast.walk(tree):
if isinstance(node, ast.Call):
if isinstance(node.func, ast.Attribute):
if hasattr(node.func.value, 'id') and node.func.value.id == component_name:
events.append(node.func.attr)
return events
@staticmethod
def analyze_interface_structure(code: str) -> Dict[str, Any]:
"""Analyze interface structure"""
try:
# Extract components
components = InterfaceAnalyzer.extract_components(code)
# Analyze functions
functions = []
tree = ast.parse(code)
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
functions.append({
"name": node.name,
"args": [arg.arg for arg in node.args.args],
"returns": InterfaceAnalyzer._get_return_type(node)
})
# Analyze dependencies
dependencies = set()
for node in ast.walk(tree):
if isinstance(node, ast.Import):
for name in node.names:
dependencies.add(name.name)
elif isinstance(node, ast.ImportFrom):
if node.module:
dependencies.add(node.module)
return {
"components": [
{
"type": comp.type.value,
"label": comp.label,
"properties": comp.properties,
"events": comp.events
}
for comp in components
],
"functions": functions,
"dependencies": list(dependencies)
}
except Exception as e:
logger.error(f"Error analyzing interface: {e}")
return {}
@staticmethod
def _get_return_type(node: ast.FunctionDef) -> str:
"""Get function return type if specified"""
if node.returns:
return ast.unparse(node.returns)
return "Any"
class PreviewManager:
"""Manages interface previews"""
def __init__(self):
self.current_process: Optional[subprocess.Popen] = None
self.preview_port = DEFAULT_PORT
self._lock = threading.Lock()
def start_preview(self, code: str) -> Tuple[bool, str]:
"""Start preview in a separate process"""
with self._lock:
try:
self.stop_preview()
# Create temporary module
module_path = create_temp_module(code)
# Start new process
self.current_process = subprocess.Popen(
['python', module_path],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
# Wait for server to start
time.sleep(2)
# Check if process is still running
if self.current_process.poll() is not None:
stdout, stderr = self.current_process.communicate()
error_msg = stderr.decode('utf-8')
raise RuntimeError(f"Preview failed to start: {error_msg}")
return True, f"http://localhost:{self.preview_port}"
except Exception as e:
return False, str(e)
def stop_preview(self):
"""Stop current preview process"""
if self.current_process:
self.current_process.terminate()
try:
self.current_process.wait(timeout=5)
except subprocess.TimeoutExpired:
self.current_process.kill()
self.current_process = None
def cleanup(self):
"""Cleanup resources"""
self.stop_preview()
# Clean up temporary files
for temp_file in TEMP_DIR.glob("*.py"):
try:
temp_file.unlink()
except Exception as e:
logger.error(f"Error deleting temporary file {temp_file}: {e}")
class GradioInterface:
"""Main Gradio interface builder class"""
def __init__(self):
"""Initialize the Gradio interface builder"""
try:
self.rag_system = MultimodalRAG()
self.template_manager = TemplateManager()
self.preview_manager = PreviewManager()
self.current_code = ""
self.error_log = []
self.interface = self._create_interface()
except Exception as e:
logger.error(f"Error initializing GradioInterface: {str(e)}")
raise
def _create_interface(self) -> gr.Blocks:
"""Create the main Gradio interface"""
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("# 🚀 Gradio Interface Builder")
with gr.Tabs():
# Design Tab
with gr.Tab("Design"):
with gr.Row():
with gr.Column(scale=2):
# Input Section
gr.Markdown("## 📝 Design Your Interface")
description = gr.Textbox(
label="Description",
placeholder="Describe the interface you want to create...",
lines=3
)
screenshot = gr.Image(
label="Screenshot (optional)",
type="pil"
)
with gr.Row():
generate_btn = gr.Button("🎨 Generate Interface", variant="primary")
clear_btn = gr.Button("🗑️ Clear")
# Template Selection
gr.Markdown("### 📚 Templates")
template_dropdown = gr.Dropdown(
choices=self._get_template_choices(),
label="Base Template",
interactive=True
)
with gr.Column(scale=3):
# Code Editor
code_editor = gr.Code(
label="Generated Code",
language="python",
interactive=True
)
with gr.Row():
validate_btn = gr.Button("✅ Validate")
format_btn = gr.Button("📋 Format")
save_template_btn = gr.Button("💾 Save as Template")
validation_output = gr.Markdown()
# Preview Tab
with gr.Tab("Preview"):
with gr.Row():
preview_btn = gr.Button("▶️ Start Preview", variant="primary")
stop_preview_btn = gr.Button("⏹️ Stop Preview")
preview_frame = gr.HTML(
label="Preview",
value="<p>Click 'Start Preview' to see your interface</p>"
)
preview_status = gr.Markdown()
# Analysis Tab
with gr.Tab("Analysis"):
analyze_btn = gr.Button("🔍 Analyze Interface")
with gr.Row():
with gr.Column():
gr.Markdown("### 🧩 Components")
components_json = gr.JSON(label="Detected Components")
with gr.Column():
gr.Markdown("### 🔄 Functions")
functions_json = gr.JSON(label="Interface Functions")
with gr.Row():
with gr.Column():
gr.Markdown("### 📦 Dependencies")
dependencies_json = gr.JSON(label="Required Dependencies")
with gr.Column():
gr.Markdown("### 📄 Requirements")
requirements_text = gr.Textbox(
label="requirements.txt",
lines=10
)
# Event handlers
generate_btn.click(
fn=self._generate_interface,
inputs=[description, screenshot, template_dropdown],
outputs=[code_editor, validation_output]
)
clear_btn.click(
fn=self._clear_interface,
outputs=[description, screenshot, code_editor, validation_output]
)
validate_btn.click(
fn=self._validate_code,
inputs=[code_editor],
outputs=[validation_output]
)
format_btn.click(
fn=self._format_code,
inputs=[code_editor],
outputs=[code_editor]
)
save_template_btn.click(
fn=self._save_as_template,
inputs=[code_editor, description],
outputs=[template_dropdown, validation_output]
)
preview_btn.click(
fn=self._start_preview,
inputs=[code_editor],
outputs=[preview_frame, preview_status]
)
stop_preview_btn.click(
fn=self._stop_preview,
outputs=[preview_frame, preview_status]
)
analyze_btn.click(
fn=self._analyze_interface,
inputs=[code_editor],
outputs=[
components_json,
functions_json,
dependencies_json,
requirements_text
]
)
# Update template dropdown when templates change
template_dropdown.change(
fn=self._load_template,
inputs=[template_dropdown],
outputs=[code_editor]
)
return interface
def _get_template_choices(self) -> List[str]:
"""Get list of available templates"""
templates = self.template_manager.list_templates()
return [""] + [t["name"] for t in templates]
def _generate_interface(
self,
description: str,
screenshot: Optional[Image.Image],
template_name: str
) -> Tuple[str, str]:
"""Generate interface code"""
try:
if template_name:
template = self.template_manager.get_template(template_name)
if template:
code = self.rag_system.generate_code(description, template.code)
else:
raise ValueError(f"Template {template_name} not found")
else:
code = self.rag_system.generate_interface(screenshot, description)
self.current_code = code
return code, "✅ Code generated successfully"
except Exception as e:
error_msg = f"❌ Error generating interface: {str(e)}"
logger.error(error_msg)
return "", error_msg
def _clear_interface(self) -> Tuple[str, None, str, str]:
"""Clear all inputs and outputs"""
self.current_code = ""
return "", None, "", ""
def _validate_code(self, code: str) -> str:
"""Validate code syntax"""
is_valid, message = validate_code(code)
return f"{'✅' if is_valid else '❌'} {message}"
def _format_code(self, code: str) -> str:
"""Format code"""
try:
return CodeFormatter.format_code(code)
except Exception as e:
logger.error(f"Error formatting code: {e}")
return code
def _save_as_template(self, code: str, description: str) -> Tuple[List[str], str]:
"""Save current code as template"""
try:
# Generate template name
base_name = "custom_template"
counter = 1
name = base_name
while self.template_manager.get_template(name):
name = f"{base_name}_{counter}"
counter += 1
# Create template
template = Template(
code=code,
description=description,
components=InterfaceAnalyzer.extract_components(code),
metadata={"category": "custom"}
)
# Save template
if self.template_manager.save_template(name, template):
return self._get_template_choices(), f"✅ Template saved as {name}"
else:
raise Exception("Failed to save template")
except Exception as e:
error_msg = f"❌ Error saving template: {str(e)}"
logger.error(error_msg)
return self._get_template_choices(), error_msg
def _start_preview(self, code: str) -> Tuple[str, str]:
"""Start interface preview"""
success, result = self.preview_manager.start_preview(code)
if success:
return f'<iframe src="{result}" width="100%" height="600px"></iframe>', "✅ Preview started"
else:
return "", f"❌ Preview failed: {result}"
def _stop_preview(self) -> Tuple[str, str]:
"""Stop interface preview"""
self.preview_manager.stop_preview()
return "<p>Preview stopped</p>", "✅ Preview stopped"
def _load_template(self, template_name: str) -> str:
"""Load selected template"""
if not template_name:
return ""
template = self.template_manager.get_template(template_name)
if template:
return template.code
return ""
def _analyze_interface(self, code: str) -> Tuple[Dict, Dict, Dict, str]:
"""Analyze interface structure"""
try:
analysis = InterfaceAnalyzer.analyze_interface_structure(code)
# Generate requirements.txt
dependencies = analysis.get("dependencies", [])
requirements = CodeGenerator.generate_requirements(dependencies)
return (
analysis.get("components", {}),
analysis.get("functions", {}),
{"dependencies": dependencies},
requirements
)
except Exception as e:
logger.error(f"Error analyzing interface: {e}")
return {}, {}, {}, ""
def launch(self, **kwargs):
"""Launch the interface"""
try:
self.interface.launch(**kwargs)
finally:
self.cleanup()
def cleanup(self):
"""Cleanup resources"""
try:
self.preview_manager.cleanup()
self.rag_system.cleanup()
except Exception as e:
logger.error(f"Error during cleanup: {e}")
def main():
"""Main entry point"""
try:
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# Create and launch interface
interface = GradioInterface()
interface.launch(
share=True,
debug=True,
server_name="0.0.0.0"
)
except Exception as e:
logger.error(f"Application error: {e}")
raise
if __name__ == "__main__":
main() |