Spaces:
Runtime error
Runtime error
File size: 9,959 Bytes
2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab 2582b22 7e568ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import threading
import time
import gradio as gr
import logging
import json
import re
import torch
import tempfile
import subprocess
import ast
import os
import dataclasses
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Any, Union
from dataclasses import dataclass, field
from enum import Enum
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
from PIL import Image
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('gradio_builder.log')
]
)
logger = logging.getLogger(__name__)
# Constants
DEFAULT_PORT = 7860
MODEL_CACHE_DIR = Path("model_cache")
TEMPLATE_DIR = Path("templates")
TEMP_DIR = Path("temp")
DATABASE_PATH = Path("code_database.json") #Path for our simple database
# Ensure directories exist
for directory in [MODEL_CACHE_DIR, TEMPLATE_DIR, TEMP_DIR]:
directory.mkdir(exist_ok=True, parents=True)
@dataclass
class Template:
code: str
description: str
components: List[str]
metadata: Dict[str, Any] = field(default_factory=dict)
version: str = "1.0"
class TemplateManager:
# ... (TemplateManager remains the same) ...
class RAGSystem:
def __init__(self, model_name: str = "gpt2", device: str = "cuda" if torch.cuda.is_available() else "cpu", embedding_model="all-mpnet-base-v2"):
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
self.device = device
self.pipe = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer, device=self.device)
self.embedding_model = SentenceTransformer(embedding_model)
self.load_database()
except Exception as e:
logger.error(f"Error loading language model or embedding model: {e}. Falling back to placeholder generation.")
self.pipe = None
self.embedding_model = None
self.code_embeddings = None
def load_database(self):
"""Loads or creates the code database"""
if DATABASE_PATH.exists():
try:
with open(DATABASE_PATH, 'r', encoding='utf-8') as f:
self.database = json.load(f)
self.code_embeddings = np.array(self.database['embeddings'])
logger.info("Loaded code database from file")
except (json.JSONDecodeError, KeyError) as e:
logger.error(f"Error loading code database: {e}. Creating new database.")
self.database = {'codes': [], 'embeddings': []}
self.code_embeddings = np.array([])
else:
logger.info("Code database does not exist. Creating new database.")
self.database = {'codes': [], 'embeddings': []}
self.code_embeddings = np.array([])
if self.embedding_model and len(self.database['codes']) != len(self.database['embeddings']):
logger.warning("Mismatch between number of codes and embeddings, rebuilding embeddings")
self.rebuild_embeddings()
elif self.embedding_model is None:
logger.warning("Embeddings are not supported in this context. ")
#Index the embeddings for efficient searching
if len(self.code_embeddings) > 0 and self.embedding_model:
self.index = faiss.IndexFlatL2(self.code_embeddings.shape[1]) #L2 distance
self.index.add(self.code_embeddings)
def add_to_database(self, code: str):
"""Adds a code snippet to the database"""
try:
embedding = self.embedding_model.encode(code)
self.database['codes'].append(code)
self.database['embeddings'].append(embedding.tolist())
self.code_embeddings = np.vstack((self.code_embeddings, embedding))
self.index.add(np.array([embedding])) # update FAISS index
self.save_database()
logger.info(f"Added code snippet to database. Total size:{len(self.database['codes'])}")
except Exception as e:
logger.error(f"Error adding to database: {e}")
def save_database(self):
"""Saves the database to a file"""
try:
with open(DATABASE_PATH, 'w', encoding='utf-8') as f:
json.dump(self.database, f, indent=2)
logger.info(f"Saved database to {DATABASE_PATH}")
except Exception as e:
logger.error(f"Error saving database: {e}")
def rebuild_embeddings(self):
"""rebuilds embeddings from the codes"""
try:
embeddings = self.embedding_model.encode(self.database['codes'])
self.code_embeddings = embeddings
self.database['embeddings'] = embeddings.tolist()
self.index = faiss.IndexFlatL2(embeddings.shape[1]) #L2 distance
self.index.add(embeddings)
self.save_database()
logger.info("Rebuilt and saved embeddings to the database")
except Exception as e:
logger.error(f"Error rebuilding embeddings: {e}")
def retrieve_similar_code(self, description: str, top_k: int = 3) -> List[str]:
"""Retrieves similar code snippets from the database"""
if self.embedding_model is None:
return []
try:
embedding = self.embedding_model.encode(description)
D, I = self.index.search(np.array([embedding]), top_k)
return [self.database['codes'][i] for i in I[0]]
except Exception as e:
logger.error(f"Error retrieving similar code: {e}")
return []
def generate_code(self, description: str, template_code: str) -> str:
retrieved_codes = self.retrieve_similar_code(description)
prompt = f"Description: {description}\nRetrieved Code Snippets:\n{''.join([f'```python\n{code}\n```\n' for code in retrieved_codes])}\nTemplate:\n```python\n{template_code}\n```\nGenerated Code:\n```python\n"
if self.pipe:
try:
generated_text = self.pipe(prompt, max_length=500, num_return_sequences=1)[0]['generated_text']
generated_code = generated_text.split("Generated Code:")[1].strip().split('```')[0]
return generated_code
except Exception as e:
logger.error(f"Error generating code with language model: {e}. Returning template code.")
return template_code
else:
return f"# Placeholder code generation. Description: {description}\n{template_code}"
def generate_interface(self, screenshot: Optional[Image.Image], description: str) -> str:
retrieved_codes = self.retrieve_similar_code(description)
prompt = f"Create a Gradio interface based on this description: {description}\nRetrieved Code Snippets:\n{''.join([f'```python\n{code}\n```\n' for code in retrieved_codes])}"
if screenshot:
prompt += "\nThe interface should resemble the provided screenshot."
prompt += "\n```python\n"
if self.pipe:
try:
generated_text = self.pipe(prompt, max_length=500, num_return_sequences=1)[0]['generated_text']
generated_code = generated_text.split("```")[1].strip()
return generated_code
except Exception as e:
logger.error(f"Error generating interface with language model: {e}. Returning placeholder.")
return "import gradio as gr\n\ndemo = gr.Interface(fn=lambda x:x, inputs='text', outputs='text')\ndemo.launch()"
else:
return "import gradio as gr\n\ndemo = gr.Interface(fn=lambda x:x, inputs='text', outputs='text')\ndemo.launch()"
class PreviewManager:
# ... (PreviewManager remains largely the same) ...
class GradioInterface:
def __init__(self):
self.template_manager = TemplateManager(TEMPLATE_DIR)
self.template_manager.load_templates()
self.current_code = ""
self.rag_system = RAGSystem()
self.preview_manager = PreviewManager()
# ... (other GradioInterface methods remain largely the same, but you may want to improve error handling) ...
def _save_as_template(self, code: str, name: str, description: str) -> Tuple[List[str], str]:
"""Save current code as template and add to database"""
try:
components = self._extract_components(code)
template = Template(code=code, description=description, components=components)
if self.template_manager.save_template(name, template):
self.rag_system.add_to_database(code) #add code to the database
return self._get_template_choices(), f"✅ Template saved as {name}"
else:
raise Exception("Failed to save template")
except Exception as e:
error_msg = f"❌ Error saving template: {str(e)}"
logger.error(error_msg)
return self._get_template_choices(), error_msg
def launch(self, **kwargs):
with gr.Blocks() as interface:
# ... (Interface remains largely the same) ...
interface.launch(**kwargs)
def main():
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('gradio_builder.log')
]
)
logger = logging.getLogger(__name__)
logger.info("=== Application Startup ===")
try:
# Initialize and launch interface
interface = GradioInterface()
interface.launch(
server_port=DEFAULT_PORT,
share=False,
debug=True
)
except Exception as e:
logger.error(f"Application error: {e}")
raise
finally:
logger.info("=== Application Shutdown ===")
if __name__ == "__main__":
main() |