Spaces:
Runtime error
Runtime error
import gradio as gr | |
import json | |
import logging | |
from enum import Enum, auto | |
from typing import Protocol, List, Dict, Any | |
from dataclasses import dataclass, field | |
from datetime import datetime | |
import difflib | |
import pytest | |
from concurrent.futures import ThreadPoolExecutor | |
import asyncio | |
# Initialize logger | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class AgentRole(Enum): | |
ARCHITECT = auto() | |
FRONTEND = auto() | |
BACKEND = auto() | |
DATABASE = auto() | |
TESTER = auto() | |
REVIEWER = auto() | |
DEPLOYER = auto() | |
class AgentDecision: | |
agent: 'Agent' | |
decision: str | |
confidence: float | |
reasoning: str | |
timestamp: datetime = field(default_factory=datetime.now) | |
dependencies: List['AgentDecision'] = field(default_factory=list) | |
class AgentProtocol(Protocol): | |
async def decide(self, context: Dict[str, Any]) -> AgentDecision: ... | |
async def validate(self, decision: AgentDecision) -> bool: ... | |
async def implement(self, decision: AgentDecision) -> Any: ... | |
async def test(self, implementation: Any) -> bool: ... | |
class Agent: | |
role: AgentRole | |
name: str | |
autonomy_level: float # 0-10 | |
expertise: List[str] | |
confidence_threshold: float = 0.7 | |
async def reason(self, context: Dict[str, Any]) -> str: | |
"""Generate reasoning based on context and expertise""" | |
prompt = f""" | |
As {self.name}, a {self.role.name} expert with expertise in {', '.join(self.expertise)}, | |
analyze the following context and provide reasoning: | |
Context: | |
{json.dumps(context, indent=2)} | |
Consider: | |
1. Required components and their interactions | |
2. Potential challenges and solutions | |
3. Best practices and patterns | |
4. Security and performance implications | |
Reasoning: | |
""" | |
return await self.rag_system.generate_reasoning(prompt) | |
class AgentSystem: | |
def __init__(self, config: Config): | |
self.config = config | |
self.autonomy_level = 0.0 # 0-10 | |
self.agents: Dict[AgentRole, Agent] = self._initialize_agents() | |
self.decision_history: List[AgentDecision] = [] | |
self.executor = ThreadPoolExecutor(max_workers=10) | |
self.rag_system = RAGSystem(config) | |
def _initialize_agents(self) -> Dict[AgentRole, Agent]: | |
return { | |
AgentRole.ARCHITECT: Agent( | |
role=AgentRole.ARCHITECT, | |
name="System Architect", | |
autonomy_level=self.autonomy_level, | |
expertise=["system design", "architecture patterns", "integration"] | |
), | |
AgentRole.FRONTEND: Agent( | |
role=AgentRole.FRONTEND, | |
name="Frontend Developer", | |
autonomy_level=self.autonomy_level, | |
expertise=["UI/UX", "React", "Vue", "Angular"] | |
), | |
AgentRole.BACKEND: Agent( | |
role=AgentRole.BACKEND, | |
name="Backend Developer", | |
autonomy_level=self.autonomy_level, | |
expertise=["API design", "database", "security"] | |
), | |
AgentRole.TESTER: Agent( | |
role=AgentRole.TESTER, | |
name="Quality Assurance", | |
autonomy_level=self.autonomy_level, | |
expertise=["testing", "automation", "quality assurance"] | |
), | |
AgentRole.REVIEWER: Agent( | |
role=AgentRole.REVIEWER, | |
name="Code Reviewer", | |
autonomy_level=self.autonomy_level, | |
expertise=["code quality", "best practices", "security"] | |
), | |
} | |
async def set_autonomy_level(self, level: float) -> None: | |
"""Update autonomy level for all agents""" | |
self.autonomy_level = max(0.0, min(10.0, level)) | |
for agent in self.agents.values(): | |
agent.autonomy_level = self.autonomy_level | |
async def process_request(self, description: str, context: Dict[str, Any] = None) -> Dict[str, Any]: | |
"""Process a user request with current autonomy level""" | |
try: | |
context = context or {} | |
context['description'] = description | |
context['autonomy_level'] = self.autonomy_level | |
# Start with architect's decision | |
arch_decision = await self.agents[AgentRole.ARCHITECT].decide(context) | |
self.decision_history.append(arch_decision) | |
if self.autonomy_level < 3: | |
# Low autonomy: Wait for user confirmation | |
return { | |
'status': 'pending_confirmation', | |
'decision': arch_decision, | |
'next_steps': self._get_next_steps(arch_decision) | |
} | |
# Medium to high autonomy: Proceed with implementation | |
implementation_plan = await self._create_implementation_plan(arch_decision) | |
if self.autonomy_level >= 7: | |
# High autonomy: Automatic implementation and testing | |
return await self._automated_implementation(implementation_plan) | |
# Medium autonomy: Return plan for user review | |
return { | |
'status': 'pending_review', | |
'plan': implementation_plan, | |
'decisions': self.decision_history | |
} | |
except Exception as e: | |
logger.error(f"Error in request processing: {e}") | |
return {'status': 'error', 'message': str(e)} | |
async def _create_implementation_plan(self, arch_decision: AgentDecision) -> Dict[str, Any]: | |
"""Create detailed implementation plan based on architect's decision""" | |
tasks = [] | |
# Frontend tasks | |
if 'frontend' in arch_decision.decision.lower(): | |
tasks.append(self._create_frontend_tasks(arch_decision)) | |
# Backend tasks | |
if 'backend' in arch_decision.decision.lower(): | |
tasks.append(self._create_backend_tasks(arch_decision)) | |
# Testing tasks | |
tasks.append(self._create_testing_tasks(arch_decision)) | |
return { | |
'tasks': await asyncio.gather(*tasks), | |
'dependencies': arch_decision.dependencies, | |
'estimated_time': self._estimate_implementation_time(tasks) | |
} | |
async def _automated_implementation(self, plan: Dict[str, Any]) -> Dict[str, Any]: | |
"""Execute implementation plan automatically""" | |
results = { | |
'frontend': None, | |
'backend': None, | |
'tests': None, | |
'review': None | |
} | |
try: | |
# Parallel implementation of frontend and backend | |
impl_tasks = [] | |
if 'frontend' in plan['tasks']: | |
impl_tasks.append(self._implement_frontend(plan['tasks']['frontend'])) | |
if 'backend' in plan['tasks']: | |
impl_tasks.append(self._implement_backend(plan['tasks']['backend'])) | |
implementations = await asyncio.gather(*impl_tasks) | |
# Testing | |
test_results = await self.agents[AgentRole.TESTER].test(implementations) | |
# Code review | |
review_results = await self.agents[AgentRole.REVIEWER].validate({ | |
'implementations': implementations, | |
'test_results': test_results | |
}) | |
return { | |
'status': 'completed', | |
'implementations': implementations, | |
'test_results': test_results, | |
'review': review_results, | |
'decisions': self.decision_history | |
} | |
except Exception as e: | |
return { | |
'status': 'error', | |
'message': str(e), | |
'partial_results': results | |
} | |
async def _handle_implementation_failure(self, error: Exception, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Handle implementation failures with adaptive response""" | |
try: | |
# Analyze error | |
error_analysis = await self.agents[AgentRole.REVIEWER].reason({ | |
'error': str(error), | |
'context': context | |
}) | |
# Determine correction strategy | |
if self.autonomy_level >= 8: | |
# High autonomy: Attempt automatic correction | |
correction = await self._attempt_automatic_correction(error_analysis) | |
if correction['success']: | |
return await self.process_request(context['description'], correction['context']) | |
return { | |
'status': 'failure', | |
'error': str(error), | |
'analysis': error_analysis, | |
'suggested_corrections': self._suggest_corrections(error_analysis) | |
} | |
except Exception as e: | |
logger.error(f"Error handling implementation failure: {e}") | |
return {'status': 'critical_error', 'message': str(e)} | |
class AgentTester: | |
def __init__(self): | |
self.test_suites = { | |
'frontend': self._test_frontend, | |
'backend': self._test_backend, | |
'integration': self._test_integration | |
} | |
async def _test_frontend(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Run frontend tests""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
# Component rendering tests | |
for component in implementation.get('components', []): | |
try: | |
# Test component rendering | |
result = await self._test_component_render(component) | |
if result['success']: | |
results['passed'].append(f"Component {component['name']} renders correctly") | |
else: | |
results['failed'].append(f"Component {component['name']}: {result['error']}") | |
except Exception as e: | |
results['failed'].append(f"Error testing {component['name']}: {str(e)}") | |
return results | |
async def _test_backend(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Run backend tests""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
# API endpoint tests | |
for endpoint in implementation.get('endpoints', []): | |
try: | |
# Test endpoint functionality | |
result = await self._test_endpoint(endpoint) | |
if result['success']: | |
results['passed'].append(f"Endpoint {endpoint['path']} works correctly") | |
else: | |
results['failed'].append(f"Endpoint {endpoint['path']}: {result['error']}") | |
except Exception as e: | |
results['failed'].append(f"Error testing {endpoint['path']}: {str(e)}") | |
return results | |
async def _test_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Run integration tests""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
# Test frontend-backend integration | |
try: | |
result = await self._test_frontend_backend_integration(implementation) | |
if result['success']: | |
results['passed'].append("Frontend-Backend integration successful") | |
else: | |
results['failed'].append(f"Integration error: {result['error']}") | |
except Exception as e: | |
results['failed'].append(f"Integration test error: {str(e)}") | |
return results | |
class AgentValidator: | |
def __init__(self): | |
self.validators = { | |
'code_quality': self._validate_code_quality, | |
'security': self._validate_security, | |
'performance': self._validate_performance | |
} | |
async def validate_implementation(self, implementation: Dict[str, Any]) -> Dict[str, Any]: | |
"""Validate implementation against best practices""" | |
results = { | |
'passed': [], | |
'failed': [], | |
'warnings': [] | |
} | |
for validator_name, validator in self.validators.items(): | |
try: | |
validation_result = await validator(implementation) | |
results['passed'].extend(validation_result.get('passed', [])) | |
results['failed'].extend(validation_result.get('failed', [])) | |
results['warnings'].extend(validation_result.get('warnings', [])) | |
except Exception as e: | |
results['warnings'].append(f"Validator {validator_name} error: {str(e)}") | |
return results | |
class GradioInterface: | |
def __init__(self, config: Config): | |
self.config = config | |
self.agent_system = AgentSystem(config) | |
self.explorer = CodeExplorer() | |
self.backend_generator = BackendGenerator(config) | |
self.file_handler = FileHandler() | |
self.preview_size = {"width": "100%", "height": "600px"} | |
self.is_preview_loading = False | |
def launch(self) -> None: | |
with gr.Blocks(theme=gr.themes.Base()) as interface: | |
# Header | |
gr.Markdown("# AI-Powered Development Environment") | |
with gr.Tabs() as tabs: | |
# Code Generation Tab | |
with gr.Tab("Code Generation"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
code_input = gr.Code( | |
label="Input Code", | |
language="python", | |
lines=20 | |
) | |
generate_button = gr.Button("Generate") | |
with gr.Column(scale=1): | |
code_output = gr.Code( | |
label="Generated Code", | |
language="python", | |
lines=20 | |
) | |
status_message = gr.Markdown("") | |
# Agent Control Tab | |
with gr.Tab("Agent Control"): | |
with gr.Row(): | |
autonomy_slider = gr.Slider( | |
minimum=0, | |
maximum=10, | |
value=0, | |
step=0.1, | |
label="Agent Autonomy Level", | |
info="0: Manual, 10: Fully Autonomous" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
project_description = gr.Textbox( | |
label="Project Description", | |
placeholder="Describe what you want to build...", | |
lines=5 | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
framework_choice = gr.Dropdown( | |
choices=["React", "Vue", "Angular", "FastAPI", "Flask", "Django"], | |
multiselect=True, | |
label="Preferred Frameworks" | |
) | |
architecture_style = gr.Radio( | |
choices=["Monolithic", "Microservices", "Serverless"], | |
label="Architecture Style", | |
value="Monolithic" | |
) | |
testing_preference = gr.Checkbox( | |
label="Include Tests", | |
value=True | |
) | |
process_button = gr.Button("Process Request") | |
with gr.Column(scale=2): | |
with gr.Tabs() as agent_tabs: | |
with gr.Tab("Decision Log"): | |
decision_log = gr.JSON( | |
label="Agent Decisions", | |
show_label=True | |
) | |
with gr.Tab("Implementation"): | |
with gr.Tabs() as impl_tabs: | |
with gr.Tab("Frontend"): | |
frontend_code = gr.Code( | |
label="Frontend Implementation", | |
language="javascript", | |
lines=20 | |
) | |
with gr.Tab("Backend"): | |
backend_code = gr.Code( | |
label="Backend Implementation", | |
language="python", | |
lines=20 | |
) | |
with gr.Tab("Database"): | |
database_code = gr.Code( | |
label="Database Schema", | |
language="sql", | |
lines=20 | |
) | |
with gr.Tab("Test Results"): | |
test_results = gr.JSON( | |
label="Test Results" | |
) | |
rerun_tests_button = gr.Button("Rerun Tests") | |
with gr.Tab("Agent Chat"): | |
agent_chat = gr.Chatbot( | |
label="Agent Discussion", | |
height=400 | |
) | |
chat_input = gr.Textbox( | |
label="Ask Agents", | |
placeholder="Type your question here..." | |
) | |
chat_button = gr.Button("Send") | |
with gr.Row(): | |
status_output = gr.Markdown("System ready.") | |
with gr.Column(): | |
progress = gr.Progress( | |
label="Implementation Progress", | |
show_progress=True | |
) | |
# Explorer Tab | |
with gr.Tab("Code Explorer"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
component_list = gr.Dropdown( | |
label="Components", | |
choices=list(self.explorer.components.keys()), | |
interactive=True | |
) | |
refresh_button = gr.Button("Refresh") | |
with gr.Accordion("Add Component", open=False): | |
component_name = gr.Textbox(label="Name") | |
component_type = gr.Dropdown( | |
label="Type", | |
choices=['frontend', 'backend', 'database', 'api'] | |
) | |
component_code = gr.Code( | |
label="Code", | |
language="python" | |
) | |
add_button = gr.Button("Add") | |
with gr.Column(scale=2): | |
component_details = gr.JSON( | |
label="Component Details" | |
) | |
dependency_graph = gr.Plot( | |
label="Dependencies" | |
) | |
# Event Handlers | |
async def update_autonomy(level): | |
await self.agent_system.set_autonomy_level(level) | |
return f"Autonomy level set to {level}" | |
async def process_request(description, level): | |
try: | |
# Update autonomy level | |
await self.agent_system.set_autonomy_level(level) | |
# Process request | |
result = await self.agent_system.process_request(description) | |
# Update UI based on result status | |
if result['status'] == 'pending_confirmation': | |
return { | |
decision_log: result['decision'], | |
frontend_code: "", | |
backend_code: "", | |
database_code: "", | |
test_results: {}, | |
status_output: "Waiting for user confirmation...", | |
progress: 0.3 | |
} | |
elif result['status'] == 'completed': | |
return { | |
decision_log: result['decisions'], | |
frontend_code: result['implementations'].get('frontend', ''), | |
backend_code: result['implementations'].get('backend', ''), | |
database_code: result['implementations'].get('database', ''), | |
test_results: result['test_results'], | |
status_output: "Implementation completed successfully!", | |
progress: 1.0 | |
} | |
else: | |
return { | |
status_output: f"Error: {result['message']}", | |
progress: 0 | |
} | |
except Exception as e: | |
return { | |
status_output: f"Error: {str(e)}", | |
progress: 0 | |
} | |
async def handle_chat(message, history): | |
try: | |
response = await self.agent_system.process_chat(message, history) | |
history.append((message, response)) | |
return history | |
except Exception as e: | |
logger.error(f"Chat error: {e}") | |
return history + [(message, f"Error: {str(e)}")] | |
async def refresh_components(): | |
return gr.Dropdown(choices=list(self.explorer.components.keys())) | |
async def add_component(name, type, code): | |
try: | |
success = await self.explorer.add_component(name, type, code) | |
return { | |
component_list: gr.Dropdown(choices=list(self.explorer.components.keys())), | |
status_output: "Component added successfully" if success else "Failed to add component" | |
} | |
except Exception as e: | |
return { | |
status_output: f"Error adding component: {str(e)}" | |
} | |
async def show_component_details(name): | |
try: | |
component = await self.explorer.get_component(name) | |
if not component: | |
return None, None | |
graph = await self.explorer.visualize_dependencies(name) | |
return component, graph | |
except Exception as e: | |
logger.error(f"Error showing component details: {e}") | |
return None, None | |
# Connect event handlers | |
autonomy_slider.change( | |
fn=update_autonomy, | |
inputs=[autonomy_slider], | |
outputs=[status_output] | |
) | |
process_button.click( | |
fn=process_request, | |
inputs=[ | |
project_description, | |
autonomy_slider, | |
], | |
outputs=[ | |
decision_log, | |
frontend_code, | |
backend_code, | |
database_code, | |
test_results, | |
status_output, | |
progress | |
] | |
) | |
chat_button.click( | |
fn=handle_chat, | |
inputs=[chat_input, agent_chat], | |
outputs=[agent_chat] | |
) | |
refresh_button.click( | |
fn=refresh_components, | |
outputs=[component_list] | |
) | |
add_button.click( | |
fn=add_component, | |
inputs=[component_name, component_type, component_code], | |
outputs=[component_list, status_output] | |
) | |
component_list.change( | |
fn=show_component_details, | |
inputs=[component_list], | |
outputs=[component_details, dependency_graph] | |
) | |
# Launch the interface | |
interface.launch( | |
server_port=self.config.port, | |
share=self.config.share, | |
debug=self.config.debug | |
) |