CodeMixt / app.py
acecalisto3's picture
Update app.py
a02dd09 verified
raw
history blame
12.8 kB
import threading
import time
import gradio as gr
import logging
import json
import re
import torch
import tempfile
import subprocess
import ast
import os
import dataclasses
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Any, Union
from dataclasses import dataclass, field
from enum import Enum
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
from PIL import Image
from templates import TemplateManager, Template # Import TemplateManager and Template
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('gradio_builder.log')
]
)
logger = logging.getLogger(__name__)
# Constants
DEFAULT_PORT = 7860
MODEL_CACHE_DIR = Path("model_cache")
TEMPLATE_DIR = Path("templates")
TEMP_DIR = Path("temp")
DATABASE_PATH = Path("code_database.json") # Path for our simple database
# Ensure directories exist
for directory in [MODEL_CACHE_DIR, TEMPLATE_DIR, TEMP_DIR]:
directory.mkdir(exist_ok=True, parents=True)
class RAGSystem:
def __init__(self, model_name: str = "gpt2", device: str = "cuda" if torch.cuda.is_available() else "cpu", embedding_model="all-mpnet-base-v2"):
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
self.device = device
self.pipe = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer, device=self.device)
self.embedding_model = SentenceTransformer(embedding_model)
self.load_database()
logger.info("RAG system initialized successfully.")
except Exception as e:
logger.error(f"Error loading language model or embedding model: {e}. Falling back to placeholder generation.")
self.pipe = None
self.embedding_model = None
self.code_embeddings = None
def load_database(self):
"""Loads or creates the code database"""
if DATABASE_PATH.exists():
try:
with open(DATABASE_PATH, 'r', encoding='utf-8') as f:
self.database = json.load(f)
self.code_embeddings = np.array(self.database['embeddings'])
logger.info("Loaded code database from file.")
except (json.JSONDecodeError, KeyError) as e:
logger.error(f"Error loading code database: {e}. Creating new database.")
self.database = {'codes': [], 'embeddings': []}
self.code_embeddings = np.array([])
else:
logger.info("Code database does not exist. Creating new database.")
self.database = {'codes': [], 'embeddings': []}
self.code_embeddings = np.array([])
if self.embedding_model and len(self.database['codes']) != len(self.database['embeddings']):
logger.warning("Mismatch between number of codes and embeddings, rebuilding embeddings.")
self.rebuild_embeddings()
elif self.embedding_model is None:
logger.warning("Embeddings are not supported in this context.")
# Index the embeddings for efficient searching
if len(self.code_embeddings) > 0 and self.embedding_model:
self.index = faiss.IndexFlatL2(self.code_embeddings.shape[1]) # L2 distance
self.index.add(self.code_embeddings)
def add_to_database(self, code: str):
"""Adds a code snippet to the database"""
try:
embedding = self.embedding_model.encode(code)
self.database['codes'].append(code)
self.database['embeddings'].append(embedding.tolist())
self.code_embeddings = np.vstack((self.code_embeddings, embedding))
self.index.add(np.array([embedding])) # update FAISS index
self.save_database()
logger.info(f"Added code snippet to database. Total size: {len(self.database['codes'])}.")
except Exception as e:
logger.error(f"Error adding to database: {e}")
def save_database(self):
"""Saves the database to a file"""
try:
with open(DATABASE_PATH, 'w', encoding='utf-8') as f:
json.dump(self.database, f, indent=2)
logger.info(f"Saved database to {DATABASE_PATH}.")
except Exception as e:
logger.error(f"Error saving database: {e}")
def rebuild_embeddings(self):
"""Rebuilds embeddings from the codes"""
try:
embeddings = self.embedding_model.encode(self.database['codes'])
self.code_embeddings = embeddings
self.database['embeddings'] = embeddings.tolist()
self.index = faiss.IndexFlatL2(embeddings.shape[1]) # L2 distance
self.index.add(embeddings)
self.save_database()
logger.info("Rebuilt and saved embeddings to the database.")
except Exception as e:
logger.error(f"Error rebuilding embeddings: {e}")
def retrieve_similar_code(self, description: str, top_k: int = 3) -> List[str]:
"""Retrieves similar code snippets from the database"""
if self.embedding_model is None:
logger.warning("Embedding model is not available. Cannot retrieve similar code.")
return []
try:
embedding = self.embedding_model.encode(description)
D, I = self.index.search(np.array([embedding]), top_k)
logger.info(f"Retrieved {top_k} similar code snippets for description: {description}.")
return [self.database['codes'][i] for i in I[0]]
except Exception as e:
logger.error(f"Error retrieving similar code: {e}")
return []
def generate_code(self, description: str, template_code: str) -> str:
retrieved_codes = self.retrieve_similar_code(description)
prompt = f"Description: {description}\nRetrieved Code Snippets:\n{''.join([f'```python\n{code}\n```\n' for code in retrieved_codes])}\nTemplate:\n```python\n{template_code}\n```\nGenerated Code:\n```python\n"
if self.pipe:
try:
generated_text = self.pipe(prompt, max_length=500, num_return_sequences=1)[0]['generated_text']
generated_code = generated_text.split("Generated Code:")[1].strip().split('```')[0]
logger.info("Code generated successfully.")
return generated_code
except Exception as e:
logger.error(f"Error generating code with language model: {e}. Returning template code.")
return template_code
else:
logger.warning("Text generation pipeline is not available. Returning placeholder code.")
return f"# Placeholder code generation. Description: {description}\n{template_code}"
def generate_interface(self, screenshot: Optional[Image.Image], description: str) -> str:
retrieved_codes = self.retrieve_similar_code(description)
prompt = f"Create a Gradio interface based on this description: {description}\nRetrieved Code Snippets:\n{''.join([f'```python\n{code}\n```\n' for code in retrieved_codes])}"
if screenshot:
prompt += "\nThe interface should resemble the provided screenshot."
prompt += "\n```python\n"
if self.pipe:
try:
generated_text = self.pipe(prompt, max_length=500, num_return_sequences=1)[0]['generated_text']
generated_code = generated_text.split("```")[1].strip()
logger.info("Interface code generated successfully.")
return generated_code
except Exception as e:
logger.error(f"Error generating interface with language model: {e}. Returning placeholder.")
return "import gradio as gr\n\ndemo = gr.Interface(fn=lambda x:x, inputs='text', outputs='text')\ndemo.launch()"
else:
logger.warning("Text generation pipeline is not available. Returning placeholder interface code.")
return "import gradio as gr\n\ndemo = gr.Interface(fn=lambda x:x, inputs='text', outputs='text')\ndemo.launch()"
class PreviewManager:
def __init__(self):
self.preview_code = ""
def update_preview(self, code: str):
"""Update the preview with the generated code."""
self.preview_code = code
logger.info("Preview updated with new code.")
class GradioInterface:
def __init__(self):
self.template_manager = TemplateManager(TEMPLATE_DIR)
self.template_manager.load_templates()
self.current_code = ""
self.rag_system = RAGSystem()
self.preview_manager = PreviewManager()
def _extract_components(self, code: str) -> List[str]:
"""Extract components from the code."""
components = []
function_matches = re.findall(r'def (\w+)', code components.extend(function_matches)
class_matches = re.findall(r'class (\w+)', code)
components.extend(class_matches)
logger.info(f"Extracted components: {components}")
return components
def _get_template_choices(self) -> List[str]:
"""Get available template choices."""
choices = list(self.template_manager.templates.keys())
logger.info(f"Available template choices: {choices}")
return choices
def launch(self, **kwargs):
with gr.Blocks() as interface:
gr.Markdown("## Code Generation Interface")
description_input = gr.Textbox(label="Description", placeholder="Enter a description for the code you want to generate.")
code_output = gr.Textbox(label="Generated Code", interactive=False)
generate_button = gr.Button("Generate Code")
template_choice = gr.Dropdown(label="Select Template", choices=self._get_template_choices(), value=None)
save_button = gr.Button("Save as Template")
generate_button.click(
fn=self.generate_code,
inputs=[description_input, template_choice],
outputs=code_output
)
save_button.click(
fn=self.save_template,
inputs=[code_output, template_choice, description_input],
outputs=code_output
)
gr.Markdown("### Preview")
preview_output = gr.Textbox(label="Preview", interactive=False)
self.preview_manager.update_preview(code_output)
generate_button.click(
fn=lambda code: self.preview_manager.update_preview(code),
inputs=code_output,
outputs=preview_output
)
logger.info("Launching Gradio interface.")
interface.launch(**kwargs)
def generate_code(self, description: str, template_choice: Optional[str]) -> str:
"""Generate code based on the description and selected template."""
template_code = self.template_manager.get_template(template_choice) if template_choice else "" # Get template code if selected
logger.info(f"Generating code for description: {description} with template: {template_choice}")
return self.rag_system.generate_code(description, template_code)
def save_template(self, code: str, name: str, description: str) -> str:
"""Save the generated code as a template."""
try:
components = self._extract_components(code)
template = Template(code=code, description=description, components=components)
if self.template_manager.save_template(name, template):
self.rag_system.add_to_database(code) # Add code to the database
logger.info(f"Template '{name}' saved successfully.")
return f"✅ Template '{name}' saved successfully."
else:
logger.error("Failed to save template.")
return "❌ Failed to save template."
except Exception as e:
logger.error(f"Error saving template: {e}")
return f"❌ Error saving template: {str(e)}"
def main():
logger.info("=== Application Startup ===")
try:
# Initialize and launch interface
interface = GradioInterface()
interface.launch(
server_port=DEFAULT_PORT,
share=False,
debug=True
)
except Exception as e:
logger.error(f"Application error: {e}")
raise
finally:
logger.info("=== Application Shutdown ===")
if __name__ == "__main__":
main()