Spaces:
Runtime error
Runtime error
import asyncio | |
import logging | |
from typing import Dict, Any | |
from functools import partial | |
from flask import Flask, request, jsonify | |
from langchain import PromptTemplate, LLMChain | |
from langchain.llms import OpenAI | |
from langchain.chains import ConversationChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.document_loaders import TextLoader | |
logging.basicConfig(level=logging.INFO) | |
# Define core component classes | |
class Task: | |
def __init__(self, task_name: str, input_data: Any, agent_name: str): | |
self.task_name = task_name | |
self.input_data = input_data | |
self.agent_name = agent_name | |
class ModelManager: | |
def __init__(self): | |
self.model = None | |
async def start(self): | |
logging.info("Starting model.") | |
await asyncio.sleep(1) # Simulate loading time | |
async def stop(self): | |
logging.info("Unloading model.") | |
class CodeArchitect: | |
def __init__(self, model_manager: ModelManager, model=None): | |
self.model_manager = model_manager | |
self.generator = model if model else pipeline("text-generation", model="gpt2") | |
async def start(self): | |
await self.model_manager.start() | |
async def stop(self): | |
await self.model_manager.stop() | |
async def generate_code(self, text_input: str) -> str: | |
response = self.generator(text_input, max_length=5000, num_return_sequences=1)[0]['generated_text'] | |
return response | |
class UIUXWizard: | |
def __init__(self, model_manager: ModelManager, vector_store=None): | |
self.model_manager = model_manager | |
self.vector_store = vector_store | |
self.conversation_chain = ConversationChain( | |
llm=OpenAI(temperature=0.7), | |
memory=ConversationBufferMemory(), | |
) | |
async def start(self): | |
await self.model_manager.start() | |
async def stop(self): | |
await self.model_manager.stop() | |
def get_memory_response(self, query): | |
if self.vector_store is None: | |
return "No memory available." | |
else: | |
results = self.vector_store.similarity_search(query, k=3) | |
return "\n".join(results) | |
def get_conversation_response(self, query): | |
return self.conversation_chain.run(query) | |
# Define VersionControl class | |
class VersionControl: | |
def __init__(self, system_name: str): | |
self.system_name = system_name | |
async def start(self): | |
logging.info(f"Starting version control system: {self.system_name}") | |
await asyncio.sleep(1) # Simulate initialization time | |
async def stop(self): | |
logging.info(f"Stopping version control system: {self.system_name}") | |
# Define Documentation class | |
class Documentation: | |
def __init__(self, system_name: str): | |
self.system_name = system_name | |
async def start(self): | |
logging.info(f"Starting documentation system: {self.system_name}") | |
await asyncio.sleep(1) # Simulate initialization time | |
async def stop(self): | |
logging.info(f"Stopping documentation system: {self.system_name}") | |
class BuildAutomation: | |
def __init__(self, system_name: str): | |
self.system_name = system_name | |
async def start(self): | |
logging.info(f"Starting build automation system: {self.system_name}") | |
await asyncio.sleep(1) # Simulate initialization time | |
async def stop(self): | |
logging.info(f"Stopping build automation system: {self.system_name}") | |
# Define EliteDeveloperCluster class | |
class EliteDeveloperCluster: | |
def __init__(self, config: Dict[str, Any], model): | |
self.config = config | |
self.model_manager = ModelManager() | |
self.code_architect = CodeArchitect(self.model_manager, model) | |
self.uiux_wizard = UIUXWizard(self.model_manager) | |
self.version_control = VersionControl(config["version_control_system"]) | |
self.documentation = Documentation(config["documentation_system"]) | |
self.build_automation = BuildAutomation(config["build_automation_system"]) | |
self.task_queue = asyncio.Queue() | |
async def start(self): | |
await self.code_architect.start() | |
await self.uiux_wizard.start() | |
await self.version_control.start() | |
await self.documentation.start() | |
await self.build_automation.start() | |
async def stop(self): | |
await self.code_architect.stop() | |
await self.uiux_wizard.stop() | |
await self.version_control.stop() | |
await self.documentation.stop() | |
await self.build_automation.stop() | |
async def process_task(self, task: Task): | |
if task.task_name == "generate_code": | |
response = await self.code_architect.generate_code(task.input_data) | |
return response | |
elif task.task_name == "get_memory_response": | |
response = self.uiux_wizard.get_memory_response(task.input_data) | |
return response | |
elif task.task_name == "get_conversation_response": | |
response = self.uiux_wizard.get_conversation_response(task.input_data) | |
return response | |
else: | |
return f"Unknown task: {task.task_name}" | |
async def process_tasks(self): | |
while True: | |
task = await self.task_queue.get() | |
response = await self.process_task(task) | |
logging.info(f"Processed task: {task.task_name} for agent: {task.agent_name}") | |
self.task_queue.task_done() | |
yield response | |
def route_request(self, query: str) -> str: | |
# TODO: Implement logic to determine the appropriate agent based on query | |
# For now, assume all requests are for the UIUXWizard | |
return self.uiux_wizard.get_conversation_response(query) | |
# Flask App for handling agent requests | |
app = Flask(__name__) | |
def agent_request(): | |
data = request.get_json() | |
if data.get('input_value'): | |
# Process request from any agent (Agent 2, Agent 3, etc.) | |
task = Task(f"Process request from {data.get('agent_name', 'unknown agent')}", data.get('input_value'), data.get('agent_name', 'unknown agent')) | |
cluster.task_queue.put_nowait(task) | |
return jsonify({'response': 'Received input: from an agent, task added to queue.'}) | |
else: | |
return jsonify({'response': 'Invalid input'}) | |
# Chat Interface | |
def get_response(query: str) -> str: | |
return cluster.route_request(query) | |
def response_streaming(text: str): | |
try: | |
for char in text: | |
yield char | |
except Exception as e: | |
logging.error(f"Error in response streaming: {e}") | |
yield "Error occurred while streaming the response." | |
class ChatApp: | |
def __init__(self, cluster: EliteDeveloperCluster): | |
self.cluster = cluster | |
async def start(self): | |
await self.cluster.start() | |
async def stop(self): | |
await self.cluster.stop() | |
async def handle_request(self, query: str) -> str: | |
response = await self.cluster.process_tasks() | |
return response | |
# Configuration | |
config = { | |
"version_control_system": "Git", | |
"testing_framework": "PyTest", | |
"documentation_system": "Sphinx", | |
"build_automation_system": "Jenkins", | |
"redis_host": "localhost", | |
"redis_port": 6379, | |
"max_workers": 4, | |
} | |
if __name__ == "__main__": | |
# Initialize the cluster | |
cluster = EliteDeveloperCluster(config, model=None) | |
# Start the cluster and task processing loop | |
asyncio.run(cluster.start()) | |
asyncio.run(cluster.process_tasks()) | |
# Run Flask app | |
app.run(debug=True) | |