Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,11 @@ client = InferenceClient(
|
|
10 |
"mistralai/Mixtral-8x7B-Instruct-v0.1"
|
11 |
)
|
12 |
|
13 |
-
def format_prompt(message, history,
|
14 |
-
"""Formats the prompt with the selected agent
|
15 |
prompt = f"""
|
16 |
-
You are an expert
|
|
|
17 |
Using available tools, please explain the researched information.
|
18 |
Please don't answer based solely on what you already know. Always perform a search before providing a response.
|
19 |
In special cases, such as when the user specifies a page to read, there's no need to search.
|
@@ -42,8 +43,8 @@ But, you can go ahead and search in English, especially for programming-related
|
|
42 |
prompt += f"[INST] {message} [/INST]"
|
43 |
return prompt
|
44 |
|
45 |
-
def generate(prompt, history,
|
46 |
-
"""Generates a response using the selected agent
|
47 |
temperature = float(temperature)
|
48 |
if temperature < 1e-2:
|
49 |
temperature = 1e-2
|
@@ -58,7 +59,7 @@ def generate(prompt, history, agent_role, temperature=0.9, max_new_tokens=2048,
|
|
58 |
seed=random.randint(0, 10**7),
|
59 |
)
|
60 |
|
61 |
-
formatted_prompt = format_prompt(prompt, history,
|
62 |
|
63 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
64 |
output = ""
|
@@ -75,55 +76,16 @@ def change_agent(agent_name):
|
|
75 |
return f"Agent switched to: {agent_name}"
|
76 |
|
77 |
# Define the available agent roles
|
78 |
-
agent_roles =
|
79 |
-
"Web Developer",
|
80 |
-
"Prompt Engineer",
|
81 |
-
"Python Code Developer",
|
82 |
-
"Hugging Face Hub Expert",
|
83 |
-
"AI-Powered Code Assistant"
|
84 |
-
|
85 |
|
86 |
# Initialize the selected agent
|
87 |
-
selected_agent = agent_roles[0]
|
88 |
-
|
89 |
-
additional_inputs=[
|
90 |
-
gr.Slider(
|
91 |
-
label="Temperatur",
|
92 |
-
value=0.9,
|
93 |
-
minimum=0.0,
|
94 |
-
maximum=1.0,
|
95 |
-
step=0.05,
|
96 |
-
interactive=True,
|
97 |
-
info="Höhere Werte erzeugen vielfältigere Ausgaben",
|
98 |
-
),
|
99 |
-
gr.Slider(
|
100 |
-
label="Maximale neue Tokens",
|
101 |
-
value=2048,
|
102 |
-
minimum=64,
|
103 |
-
maximum=4096,
|
104 |
-
step=64,
|
105 |
-
interactive=True,
|
106 |
-
info="Die maximale Anzahl neuer Tokens",
|
107 |
-
),
|
108 |
-
gr.Slider(
|
109 |
-
label="Top-p (Nukleus-Sampling)",
|
110 |
-
value=0.90,
|
111 |
-
minimum=0.0,
|
112 |
-
maximum=1,
|
113 |
-
step=0.05,
|
114 |
-
interactive=True,
|
115 |
-
info="Höhere Werte probieren mehr niedrigwahrscheinliche Tokens aus",
|
116 |
-
),
|
117 |
-
gr.Slider(
|
118 |
-
label="Wiederholungsstrafe",
|
119 |
-
value=1.2,
|
120 |
-
minimum=1.0,
|
121 |
-
maximum=2.0,
|
122 |
-
step=0.05,
|
123 |
-
interactive=True,
|
124 |
-
info="Bestrafe wiederholte Tokens",
|
125 |
-
)
|
126 |
-
]
|
127 |
|
128 |
# Define the initial prompt for the selected agent
|
129 |
initial_prompt = f"""
|
@@ -156,6 +118,16 @@ customCSS = """
|
|
156 |
}
|
157 |
"""
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
def run_code(code):
|
160 |
"""Executes the provided code and returns the output."""
|
161 |
try:
|
@@ -168,96 +140,57 @@ def run_code(code):
|
|
168 |
except subprocess.CalledProcessError as e:
|
169 |
return f"Error: {e.output}"
|
170 |
|
171 |
-
def chat_interface(message, history,
|
172 |
"""Handles user input and generates responses."""
|
173 |
if message.startswith("
|
174 |
|
175 |
|
176 |
-
python"): # User entered code, execute it code = message[9:-3] output = run_code(code) return (message, output) else: # User entered a normal message, generate a response response = generate(message, history,
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
gr.Slider(
|
224 |
-
label="Temperature",
|
225 |
-
value=0.9,
|
226 |
-
minimum=0.0,
|
227 |
-
maximum=1.0,
|
228 |
-
step=0.05,
|
229 |
-
interactive=True,
|
230 |
-
info="Higher values generate more diverse outputs",
|
231 |
-
),
|
232 |
-
gr.Slider(
|
233 |
-
label="Maximum New Tokens",
|
234 |
-
value=2048,
|
235 |
-
minimum=64,
|
236 |
-
maximum=4096,
|
237 |
-
step=64,
|
238 |
-
interactive=True,
|
239 |
-
info="The maximum number of new tokens",
|
240 |
-
),
|
241 |
-
gr.Slider(
|
242 |
-
label="Top-p (Nucleus Sampling)",
|
243 |
-
value=0.90,
|
244 |
-
minimum=0.0,
|
245 |
-
maximum=1,
|
246 |
-
step=0.05,
|
247 |
-
interactive=True,
|
248 |
-
info="Higher values sample more low-probability tokens",
|
249 |
-
),
|
250 |
-
gr.Slider(
|
251 |
-
label="Repetition Penalty",
|
252 |
-
value=1.2,
|
253 |
-
minimum=1.0,
|
254 |
-
maximum=2.0,
|
255 |
-
step=0.05,
|
256 |
-
interactive=True,
|
257 |
-
info="Penalize repeated tokens",
|
258 |
-
)
|
259 |
-
],
|
260 |
-
inputs=[gr.Textbox, gr.Chatbot, get_agent_cluster],
|
261 |
-
)
|
262 |
|
263 |
-
|
|
|
10 |
"mistralai/Mixtral-8x7B-Instruct-v0.1"
|
11 |
)
|
12 |
|
13 |
+
def format_prompt(message, history, agent_roles):
|
14 |
+
"""Formats the prompt with the selected agent roles and conversation history."""
|
15 |
prompt = f"""
|
16 |
+
You are an expert agent cluster, consisting of {', '.join(agent_roles)}.
|
17 |
+
Respond with complete program coding to client requests.
|
18 |
Using available tools, please explain the researched information.
|
19 |
Please don't answer based solely on what you already know. Always perform a search before providing a response.
|
20 |
In special cases, such as when the user specifies a page to read, there's no need to search.
|
|
|
43 |
prompt += f"[INST] {message} [/INST]"
|
44 |
return prompt
|
45 |
|
46 |
+
def generate(prompt, history, agent_roles, temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0):
|
47 |
+
"""Generates a response using the selected agent roles and parameters."""
|
48 |
temperature = float(temperature)
|
49 |
if temperature < 1e-2:
|
50 |
temperature = 1e-2
|
|
|
59 |
seed=random.randint(0, 10**7),
|
60 |
)
|
61 |
|
62 |
+
formatted_prompt = format_prompt(prompt, history, agent_roles)
|
63 |
|
64 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
65 |
output = ""
|
|
|
76 |
return f"Agent switched to: {agent_name}"
|
77 |
|
78 |
# Define the available agent roles
|
79 |
+
agent_roles = {
|
80 |
+
"Web Developer": {"description": "A master of front-end and back-end web development.", "active": False},
|
81 |
+
"Prompt Engineer": {"description": "An expert in crafting effective prompts for AI models.", "active": False},
|
82 |
+
"Python Code Developer": {"description": "A skilled Python programmer who can write clean and efficient code.", "active": False},
|
83 |
+
"Hugging Face Hub Expert": {"description": "A specialist in navigating and utilizing the Hugging Face Hub.", "active": False},
|
84 |
+
"AI-Powered Code Assistant": {"description": "An AI assistant that can help with coding tasks and provide code snippets.", "active": False},
|
85 |
+
}
|
86 |
|
87 |
# Initialize the selected agent
|
88 |
+
selected_agent = list(agent_roles.keys())[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
# Define the initial prompt for the selected agent
|
91 |
initial_prompt = f"""
|
|
|
118 |
}
|
119 |
"""
|
120 |
|
121 |
+
def toggle_agent(agent_name):
|
122 |
+
"""Toggles the active state of an agent."""
|
123 |
+
global agent_roles
|
124 |
+
agent_roles[agent_name]["active"] = not agent_roles[agent_name]["active"]
|
125 |
+
return f"{agent_name} is now {'active' if agent_roles[agent_name]['active'] else 'inactive'}"
|
126 |
+
|
127 |
+
def get_agent_cluster():
|
128 |
+
"""Returns a dictionary of active agents."""
|
129 |
+
return {agent: agent_roles[agent]["active"] for agent in agent_roles}
|
130 |
+
|
131 |
def run_code(code):
|
132 |
"""Executes the provided code and returns the output."""
|
133 |
try:
|
|
|
140 |
except subprocess.CalledProcessError as e:
|
141 |
return f"Error: {e.output}"
|
142 |
|
143 |
+
def chat_interface(message, history, agent_cluster, temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0):
|
144 |
"""Handles user input and generates responses."""
|
145 |
if message.startswith("
|
146 |
|
147 |
|
148 |
+
python"): # User entered code, execute it code = message[9:-3] output = run_code(code) return (message, output) else: # User entered a normal message, generate a response active_agents = [agent for agent, is_active in agent_cluster.items() if is_active] response = generate(message, history, active_agents, temperature, max_new_tokens, top_p, repetition_penalty) return (message, response)
|
149 |
+
|
150 |
+
with gr.Blocks(theme='ParityError/Interstellar') as demo: with gr.Row(): for agent_name, agent_data in agent_roles.items(): gr.Button(agent_name, variant="secondary").click(toggle_agent, inputs=[gr.Button], outputs=[gr.Textbox]) gr.Textbox(agent_data["description"], interactive=False)
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
gr.ChatInterface(
|
154 |
+
chat_interface,
|
155 |
+
additional_inputs=[
|
156 |
+
gr.Slider(
|
157 |
+
label="Temperature",
|
158 |
+
value=0.9,
|
159 |
+
minimum=0.0,
|
160 |
+
maximum=1.0,
|
161 |
+
step=0.05,
|
162 |
+
interactive=True,
|
163 |
+
info="Higher values generate more diverse outputs",
|
164 |
+
),
|
165 |
+
gr.Slider(
|
166 |
+
label="Maximum New Tokens",
|
167 |
+
value=2048,
|
168 |
+
minimum=64,
|
169 |
+
maximum=4096,
|
170 |
+
step=64,
|
171 |
+
interactive=True,
|
172 |
+
info="The maximum number of new tokens",
|
173 |
+
),
|
174 |
+
gr.Slider(
|
175 |
+
label="Top-p (Nucleus Sampling)",
|
176 |
+
value=0.90,
|
177 |
+
minimum=0.0,
|
178 |
+
maximum=1,
|
179 |
+
step=0.05,
|
180 |
+
interactive=True,
|
181 |
+
info="Higher values sample more low-probability tokens",
|
182 |
+
),
|
183 |
+
gr.Slider(
|
184 |
+
label="Repetition Penalty",
|
185 |
+
value=1.2,
|
186 |
+
minimum=1.0,
|
187 |
+
maximum=2.0,
|
188 |
+
step=0.05,
|
189 |
+
interactive=True,
|
190 |
+
info="Penalize repeated tokens",
|
191 |
+
)
|
192 |
+
],
|
193 |
+
inputs=[gr.Textbox, gr.Chatbot, get_agent_cluster],
|
194 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
+
demo.queue().launch(debug=True)
|