Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ from sentence_transformers import SentenceTransformer
|
|
23 |
import faiss
|
24 |
import numpy as np
|
25 |
from PIL import Image
|
26 |
-
|
27 |
|
28 |
|
29 |
|
@@ -213,29 +213,19 @@ class ModelManager:
|
|
213 |
}
|
214 |
|
215 |
def load_model(self, model_type: str):
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
|
221 |
-
|
222 |
-
|
223 |
|
224 |
-
|
225 |
-
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
config["model_id"],
|
230 |
-
**config["kwargs"]
|
231 |
-
)
|
232 |
-
model = config["model"].from_pretrained(
|
233 |
-
config["model_id"],
|
234 |
-
**config["kwargs"]
|
235 |
-
)
|
236 |
-
self.loaded_models[model_type] = (model, tokenizer)
|
237 |
-
|
238 |
-
elif model_type == "image_processor":
|
239 |
processor = config["processor"].from_pretrained(
|
240 |
config["model_id"],
|
241 |
**config["kwargs"]
|
@@ -244,14 +234,14 @@ class ModelManager:
|
|
244 |
config["model_id"],
|
245 |
**config["kwargs"]
|
246 |
)
|
|
|
|
|
247 |
self.loaded_models[model_type] = (model, processor)
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
raise ModelError(f"Error loading {model_type} model: {str(e)}")
|
254 |
-
|
255 |
def unload_model(self, model_type: str):
|
256 |
"""Unload a model to free memory"""
|
257 |
if model_type in self.loaded_models:
|
@@ -309,21 +299,27 @@ class MultimodalRAG:
|
|
309 |
logger.error(f"Error saving template embeddings: {e}")
|
310 |
|
311 |
def encode_image(self, image: Image.Image) -> np.ndarray:
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
|
|
|
|
|
|
|
|
321 |
|
322 |
-
|
323 |
-
|
324 |
-
|
|
|
325 |
def encode_text(self, text: str) -> np.ndarray:
|
326 |
"""Encode text using sentence-transformers"""
|
|
|
327 |
try:
|
328 |
return self.text_encoder.encode(text)
|
329 |
except Exception as e:
|
|
|
23 |
import faiss
|
24 |
import numpy as np
|
25 |
from PIL import Image
|
26 |
+
from transformers import BlipForConditionalGeneration
|
27 |
|
28 |
|
29 |
|
|
|
213 |
}
|
214 |
|
215 |
def load_model(self, model_type: str):
|
216 |
+
"""Load a model by type"""
|
217 |
+
try:
|
218 |
+
if model_type not in self.model_configs:
|
219 |
+
raise ModelError(f"Unknown model type: {model_type}")
|
220 |
|
221 |
+
if model_type in self.loaded_models:
|
222 |
+
return self.loaded_models[model_type]
|
223 |
|
224 |
+
config = self.model_configs[model_type]
|
225 |
+
logger.info(f"Loading {model_type} model...")
|
226 |
|
227 |
+
if model_type == "image_processor":
|
228 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
processor = config["processor"].from_pretrained(
|
230 |
config["model_id"],
|
231 |
**config["kwargs"]
|
|
|
234 |
config["model_id"],
|
235 |
**config["kwargs"]
|
236 |
)
|
237 |
+
if torch.cuda.is_available():
|
238 |
+
model = model.to("cuda")
|
239 |
self.loaded_models[model_type] = (model, processor)
|
240 |
+
logger.info(f"{model_type} model loaded successfully")
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
logger.error(f"Error loading {model_type} model: {e}")
|
244 |
+
raise ModelError(f"Failed to load {model_type} model: {e}")
|
|
|
|
|
245 |
def unload_model(self, model_type: str):
|
246 |
"""Unload a model to free memory"""
|
247 |
if model_type in self.loaded_models:
|
|
|
299 |
logger.error(f"Error saving template embeddings: {e}")
|
300 |
|
301 |
def encode_image(self, image: Image.Image) -> np.ndarray:
|
302 |
+
"""Encode image using BLIP"""
|
303 |
+
try:
|
304 |
+
model, processor = self.model_manager.load_model("image_processor")
|
305 |
+
|
306 |
+
# Process image
|
307 |
+
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
308 |
+
|
309 |
+
# Get image features using the proper method
|
310 |
+
with torch.no_grad():
|
311 |
+
outputs = model.get_image_features(**inputs)
|
312 |
+
image_features = outputs.last_hidden_state.mean(dim=1) # Average pooling
|
313 |
+
|
314 |
+
return image_features.cpu().numpy()
|
315 |
|
316 |
+
except Exception as e:
|
317 |
+
logger.error(f"Error encoding image: {str(e)}")
|
318 |
+
raise ModelError(f"Error encoding image: {str(e)}")
|
319 |
+
|
320 |
def encode_text(self, text: str) -> np.ndarray:
|
321 |
"""Encode text using sentence-transformers"""
|
322 |
+
|
323 |
try:
|
324 |
return self.text_encoder.encode(text)
|
325 |
except Exception as e:
|