import gradio as gr from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer from typing import List, Dict, Any # --- Agent Definitions --- class Agent: def __init__(self, name: str, role: str, skills: List[str], model_name: str = None): self.name = name self.role = role self.skills = skills self.model = None if model_name: self.load_model(model_name) def load_model(self, model_name: str): self.model = pipeline(task="text-classification", model=model_name) def handle_task(self, task: str) -> str: # Placeholder for task handling logic # This is where each agent will implement its specific behavior return f"Agent {self.name} received task: {task}" class AgentCluster: def __init__(self, agents: List[Agent]): self.agents = agents self.task_queue = [] def add_task(self, task: str): self.task_queue.append(task) def process_tasks(self): for task in self.task_queue: # Assign task to the most suitable agent based on skills best_agent = self.find_best_agent(task) if best_agent: result = best_agent.handle_task(task) print(f"Agent {best_agent.name} completed task: {task} - Result: {result}") else: print(f"No suitable agent found for task: {task}") self.task_queue = [] def find_best_agent(self, task: str) -> Agent: # Placeholder for agent selection logic # This is where the cluster will determine which agent is best for a given task return self.agents[0] # For now, just return the first agent # --- Agent Clusters for Different Web Apps --- # Agent Cluster for a Code Review Tool code_review_agents = AgentCluster([ Agent("CodeAnalyzer", "Code Reviewer", ["Python", "JavaScript", "C++"], "distilbert-base-uncased-finetuned-mrpc"), Agent("StyleChecker", "Code Stylist", ["Code Style", "Readability", "Best Practices"], "google/flan-t5-base"), Agent("SecurityScanner", "Security Expert", ["Vulnerability Detection", "Security Best Practices"], "google/flan-t5-base"), ]) # Agent Cluster for a Project Management Tool project_management_agents = AgentCluster([ Agent("TaskManager", "Project Manager", ["Task Management", "Prioritization", "Deadline Tracking"], "google/flan-t5-base"), Agent("ResourceAllocator", "Resource Manager", ["Resource Allocation", "Team Management", "Project Planning"], "google/flan-t5-base"), Agent("ProgressTracker", "Progress Monitor", ["Progress Tracking", "Reporting", "Issue Resolution"], "google/flan-t5-base"), ]) # Agent Cluster for a Documentation Generator documentation_agents = AgentCluster([ Agent("DocWriter", "Documentation Writer", ["Technical Writing", "API Documentation", "User Guides"], "google/flan-t5-base"), Agent("CodeDocumenter", "Code Commenter", ["Code Documentation", "Code Explanation", "Code Readability"], "google/flan-t5-base"), Agent("ContentOrganizer", "Content Manager", ["Content Structure", "Information Architecture", "Content Organization"], "google/flan-t5-base"), ]) # --- Web App Logic --- def process_input(input_text: str, selected_cluster: str): """Processes user input and assigns tasks to the appropriate agent cluster.""" if selected_cluster == "Code Review": cluster = code_review_agents elif selected_cluster == "Project Management": cluster = project_management_agents elif selected_cluster == "Documentation Generation": cluster = documentation_agents else: return "Please select a valid agent cluster." cluster.add_task(input_text) cluster.process_tasks() return "Task processed successfully!" # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("## Agent-Powered Development Automation") input_text = gr.Textbox(label="Enter your development task:") selected_cluster = gr.Radio( label="Select Agent Cluster", choices=["Code Review", "Project Management", "Documentation Generation"] ) submit_button = gr.Button("Submit") output_text = gr.Textbox(label="Output") submit_button.click(process_input, inputs=[input_text, selected_cluster], outputs=output_text) demo.launch()