import subprocess from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import black from pylint import lint from io import StringIO import os import json from streamlit_ace import st_ace from agent import ( AppType, createLlamaPrompt, createSpace, isPythonOrGradioAppPrompt, isReactAppPrompt, isStreamlitAppPrompt, generateFiles, ) import importlib import sys def initialize_global_variables(): global HUGGING_FACE_REPO_URL, PROJECT_ROOT, AGENT_DIRECTORY HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/Mistri" PROJECT_ROOT = "projects" AGENT_DIRECTORY = "agents" initialize_global_variables() # Initialize session state attributes for attr in ['chat_history', 'terminal_history', 'workspace_projects', 'available_agents', 'current_state']: if attr not in st.session_state: st.session_state[attr] = [] def save_agent_to_file(agent): agents_path = os.path.join(PROJECT_ROOT, AGENT_DIRECTORY) if not os.path.exists(agents_path): os.makedirs(agents_path) agent_file = os.path.join(agents_path, f"{agent.name}.txt") config_file = os.path.join(agents_path, f"{agent.name}Config.txt") with open(agent_file, "w") as file: file.write(agent.create_agent_prompt()) with open(config_file, "w") as file: file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}") st.session_state.available_agents.append(agent.name) commit_and_push_changes(f"Add agent {agent.name}") def load_agent_prompt(agent_name): agent_file = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt") if os.path.exists(agent_file): with open(agent_file, "r") as file: agent_prompt = file.read() return agent_prompt else: return None def create_agent_from_text(name, text): skills = text.split('\n') agent = AIAgent(name, "AI agent created from text input.", skills) save_agent_to_file(agent) return agent.create_agent_prompt() # Global Variables terminal_history = "" # Component Library components_registry = { "Button": { "properties": {"label": "Click Me", "onclick": ""}, "description": "A clickable button", "code_snippet": 'gr.Button(value="{label}", variant="primary")', }, "Text Input": { "properties": {"value": "", "placeholder": "Enter text"}, "description": "A field for entering text", "code_snippet": 'gr.Textbox(label="{placeholder}")', }, "Image": { "properties": {"src": "#", "alt": "Image"}, "description": "Displays an image", "code_snippet": 'gr.Image(label="{alt}")', }, "Dropdown": { "properties": {"choices": ["Option 1", "Option 2"], "value": ""}, "description": "A dropdown menu for selecting options", "code_snippet": 'gr.Dropdown(choices={choices}, label="Dropdown")', }, # Add more components here... } # NLP Model (Example using Hugging Face) nlp_model_names = [ "google/flan-t5-small", "Qwen/CodeQwen1.5-7B-Chat-GGUF", "bartowski/Codestral-22B-v0.1-GGUF", "bartowski/AutoCoder-GGUF" ] nlp_models = [] for nlp_model_name in nlp_model_names: try: cached_download(hf_hub_url(nlp_model_name, revision="main")) nlp_models.append(InferenceClient(nlp_model_name)) except: nlp_models.append(None) # Function to get NLP model response def get_nlp_response(input_text, model_index): if nlp_models[model_index]: response = nlp_models[model_index].text_generation(input_text) return response.generated_text else: return "NLP model not available." # Component Class class Component: def __init__(self, type, properties=None, id=None): self.id = id or random.randint(1000, 9999) self.type = type self.properties = properties or components_registry[type]["properties"].copy() def to_dict(self): return { "id": self.id, "type": self.type, "properties": self.properties, } def render(self): # Properly format choices for Dropdown if self.type == "Dropdown": self.properties["choices"] = ( str(self.properties["choices"]) .replace("[", "") .replace("]", "") .replace("'", "") ) return components_registry[self.type]["code_snippet"].format(**self.properties) # App Creation Process Class class AppCreationProcess: def __init__(self): self.current_step = 1 self.app_name = "" self.components = [] def next_step(self): self.current_step += 1 def previous_step(self): if self.current_step > 1: self.current_step -= 1 def get_current_step_info(self): steps = { 1: "App Initialization", 2: "Component Addition", 3: "Property Configuration", 4: "Code Generation", 5: "Deployment" } return f"Step {self.current_step}: {steps[self.current_step]}" def add_component(self, component_type): new_component = Component(component_type) self.components.append(new_component.to_dict()) return self.update_app_canvas() def set_component_property(self, component_id, property_name, property_value): for component in self.components: if component['id'] == component_id: if property_name in component['properties']: component['properties'][property_name.strip()] = property_value.strip() return self.update_app_canvas(), f"Property '{property_name}' set to '{property_value}' for component {component_id}" else: return None, f"Error: Property '{property_name}' not found in component {component_id}" return None, f"Error: Component with ID {component_id} not found." def update_app_canvas(self): components_html = "".join([ f"
Component ID: {component['id']}, Type: {component['type']}, Properties: {component['properties']}
" for component in self.components ]) return components_html def generate_python_code(self): code = f"""import gradio as gr\n\nwith gr.Blocks() as {self.app_name}:\n""" for component in self.components: code += " " + Component(**component).render() + "\n" code += f"\n{self.app_name}.launch()\n" return code def deploy_to_huggingface(self): # Generate Python code code = self.generate_python_code() # Create requirements.txt with open("requirements.txt", "w") as f: f.write("gradio==3.32.0\n") # Create the app.py file with open("app.py", "w") as f: f.write(code) # Execute the deployment command try: subprocess.run(["huggingface-cli", "repo", "create", "--type", "space", "--space_sdk", "gradio", self.app_name], check=True) subprocess.run(["git", "init"], cwd=f"./{self.app_name}", check=True) subprocess.run(["git", "add", "."], cwd=f"./{self.app_name}", check=True) subprocess.run(["git", "commit", "-m", "Initial commit"], cwd=f"./{self.app_name}", check=True) subprocess.run(["git", "push", "https://huggingface.co/spaces/" + self.app_name, "main"], cwd=f"./{self.app_name}", check=True) return f"Successfully deployed to Hugging Face Spaces: https://huggingface.co/spaces/{self.app_name}" except Exception as e: return f"Error deploying to Hugging Face Spaces: {e}" app_process = AppCreationProcess() # Function to handle terminal input def run_terminal_command(command, history): global terminal_history output = "" try: # Basic command parsing (expand with NLP) if command.startswith("add "): component_type = command.split("add ", 1)[1].strip() output = app_process.add_component(component_type) elif command.startswith("set "): _, output = set_component_property(command) elif command.startswith("search "): search_query = command.split("search ", 1)[1].strip() output = i_s(search_query) elif command.startswith("deploy "): output = app_process.deploy_to_huggingface() else: # Attempt to execute command as Python code try: result = subprocess.check_output( command, shell=True, stderr=subprocess.STDOUT, text=True ) output = result except Exception as e: output = f"Error executing Python code: {str(e)}" except Exception as e: output = f"Error: {str(e)}" finally: terminal_history += f"User: {command}\n{output}\n" return terminal_history def set_component_property(command): try: # Improved 'set' command parsing set_parts = command.split(" ", 2)[1:] if len(set_parts) != 2: raise ValueError("Invalid 'set' command format.") component_id = int(set_parts[0]) # Use component ID property_name, property_value = set_parts[1].split("=", 1) return app_process.set_component_property(component_id, property_name, property_value) except Exception as e: return None, f"Error: {str(e)}\n" # Function to handle chat interaction def run_chat(message, history): global terminal_history if message.startswith("!"): command = message[1:] terminal_history = run_terminal_command(command, history) else: model_index = 0 # Select the model to use for chat response response = get_nlp_response(message, model_index) if response: return history, terminal_history + f"User: {message}\nAssistant: {response}" else: return history, terminal_history + f"User: {message}\nAssistant: I'm sorry, I couldn't generate a response. Please try again.\n" # Gradio Interface with gr.Blocks() as iface: gr.Markdown("# Sequential App Builder") with gr.Row(): current_step = gr.Markdown(app_process.get_current_step_info()) with gr.Row(): prev_button = gr.Button("Previous Step") next_button = gr.Button("Next Step") # Step 1: App Initialization with gr.Group() as step1: app_name_input = gr.Textbox(label="Enter App Name") init_app_button = gr.Button("Initialize App") # Step 2: Component Addition with gr.Group() as step2: component_type = gr.Dropdown(choices=list(components_registry.keys()), label="Select Component Type") add_component_button = gr.Button("Add Component") components_display = gr.HTML() # Step 3: Property Configuration with gr.Group() as step3: component_id = gr.Number(label="Component ID") property_name = gr.Textbox(label="Property Name") property_value = gr.Textbox(label="Property Value") set_property_button = gr.Button("Set Property") # Step 4: Code Generation with gr.Group() as step4: generated_code = gr.Code(language="python") generate_code_button = gr.Button("Generate Code") # Step 5: Deployment with gr.Group() as step5: deploy_button = gr.Button("Deploy to Hugging Face Spaces") deployment_status = gr.Markdown() # Chat and Terminal (optional, can be hidden or shown based on preference) with gr.Accordion("Advanced", open=False): chat_history = gr.Chatbot(label="Chat with Agent") chat_input = gr.Textbox(label="Your Message") chat_button = gr.Button("Send") terminal_output = gr.Textbox(lines=8, label="Terminal", value=terminal_history) terminal_input = gr.Textbox(label="Enter Command") terminal_button = gr.Button("Run") # Function to update visibility based on current step def update_visibility(step): return { step1: gr.update(visible=(step == 1)), step2: gr.update(visible=(step == 2)), step3: gr.update(visible=(step == 3)), step4: gr.update(visible=(step == 4)), step5: gr.update(visible=(step == 5)), } # Event handlers def next_step(): app_process.next_step() return app_process.get_current_step_info(), update_visibility(app_process.current_step) def prev_step(): app_process.previous_step() return app_process.get_current_step_info(), update_visibility(app_process.current_step) next_button.click(next_step, outputs=[current_step, step1, step2, step3, step4, step5]) prev_button.click(prev_step, outputs=[current_step, step1, step2, step3, step4, step5]) # Step 1: Initialize App def init_app(name): app_process.app_name = name return f"App '{name}' initialized." init_app_button.click(init_app, inputs=[app_name_input], outputs=[components_display]) # Step 2: Add Component add_component_button.click(app_process.add_component, inputs=[component_type], outputs=[components_display]) # Step 3: Set Property set_property_button.click(app_process.set_component_property, inputs=[component_id, property_name, property_value], outputs=[components_display]) # Step 4: Generate Code generate_code_button.click(app_process.generate_python_code, outputs=[generated_code]) # Step 5: Deploy deploy_button.click(app_process.deploy_to_huggingface, outputs=[deployment_status]) # Existing chat and terminal functionality chat_button.click(run_chat, inputs=[chat_input, chat_history], outputs=[chat_history, terminal_output]) terminal_button.click(run_terminal_command, inputs=[terminal_input, terminal_output], outputs=[terminal_output]) iface.launch()