import threading import time import gradio as gr import logging import json import re import torch import tempfile import subprocess import ast from pathlib import Path from typing import Dict, List, Tuple, Optional, Any, Union from dataclasses import dataclass, field from enum import Enum from transformers import ( AutoTokenizer, AutoModelForCausalLM, pipeline, AutoProcessor, AutoModel ) from sentence_transformers import SentenceTransformer import faiss import numpy as np from PIL import Image # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler(), logging.FileHandler('gradio_builder.log') ] ) logger = logging.getLogger(__name__) # Constants DEFAULT_PORT = 7860 MODEL_CACHE_DIR = Path("model_cache") TEMPLATE_DIR = Path("templates") TEMP_DIR = Path("temp") # Ensure directories exist for directory in [MODEL_CACHE_DIR, TEMPLATE_DIR, TEMP_DIR]: directory.mkdir(exist_ok=True) @dataclass class Template: """Template data structure""" code: str description: str components: List[str] metadata: Dict[str, Any] = field(default_factory=dict) version: str = "1.0" class ComponentType(Enum): """Supported Gradio component types""" IMAGE = "Image" TEXTBOX = "Textbox" BUTTON = "Button" NUMBER = "Number" MARKDOWN = "Markdown" JSON = "JSON" HTML = "HTML" CODE = "Code" DROPDOWN = "Dropdown" SLIDER = "Slider" CHECKBOX = "Checkbox" RADIO = "Radio" AUDIO = "Audio" VIDEO = "Video" FILE = "File" DATAFRAME = "DataFrame" LABEL = "Label" PLOT = "Plot" @dataclass class ComponentConfig: """Configuration for Gradio components""" type: ComponentType label: str properties: Dict[str, Any] = field(default_factory=dict) events: List[str] = field(default_factory=list) class BuilderError(Exception): """Base exception for Gradio Builder errors""" pass class ValidationError(BuilderError): """Raised when validation fails""" pass class GenerationError(BuilderError): """Raised when code generation fails""" pass class ModelError(BuilderError): """Raised when model operations fail""" pass def setup_gpu_memory(): """Configure GPU memory usage""" try: if torch.cuda.is_available(): # Enable memory growth torch.cuda.empty_cache() # Set memory fraction torch.cuda.set_per_process_memory_fraction(0.8) logger.info("GPU memory configured successfully") else: logger.info("No GPU available, using CPU") except Exception as e: logger.warning(f"Error configuring GPU memory: {e}") def validate_code(code: str) -> Tuple[bool, str]: """Validate Python code syntax""" try: ast.parse(code) return True, "Code is valid" except SyntaxError as e: line_no = e.lineno offset = e.offset line = e.text if line: pointer = " " * (offset - 1) + "^" error_detail = f"\nLine {line_no}:\n{line}\n{pointer}" else: error_detail = f" at line {line_no}" return False, f"Syntax error: {str(e)}{error_detail}" except Exception as e: return False, f"Validation error: {str(e)}" class CodeFormatter: """Handles code formatting and cleanup""" @staticmethod def format_code(code: str) -> str: """Format code using black""" try: import black return black.format_str(code, mode=black.FileMode()) except ImportError: logger.warning("black not installed, returning unformatted code") return code except Exception as e: logger.error(f"Error formatting code: {e}") return code @staticmethod def cleanup_code(code: str) -> str: """Clean up generated code""" # Remove any potential unsafe imports unsafe_imports = ['os', 'subprocess', 'sys'] lines = code.split('\n') cleaned_lines = [] for line in lines: skip = False for unsafe in unsafe_imports: if f"import {unsafe}" in line or f"from {unsafe}" in line: skip = True break if not skip: cleaned_lines.append(line) return '\n'.join(cleaned_lines) def create_temp_module(code: str) -> str: """Create a temporary module from code""" try: temp_file = TEMP_DIR / f"temp_module_{int(time.time())}.py" with open(temp_file, "w", encoding="utf-8") as f: f.write(code) return str(temp_file) except Exception as e: raise BuilderError(f"Failed to create temporary module: {e}") # Initialize GPU configuration setup_gpu_memory() class ModelManager: """Manages AI models and their configurations""" def __init__(self, cache_dir: Path = MODEL_CACHE_DIR): self.cache_dir = cache_dir self.cache_dir.mkdir(exist_ok=True) self.loaded_models = {} self.model_configs = { "code_generator": { "model_id": "bigcode/starcoder", "tokenizer": AutoTokenizer, "model": AutoModelForCausalLM, "kwargs": { "torch_dtype": torch.float16, "device_map": "auto", "cache_dir": str(cache_dir) } }, "image_processor": { "model_id": "Salesforce/blip-image-captioning-base", "processor": AutoProcessor, "model": AutoModel, "kwargs": { "cache_dir": str(cache_dir) } } } def load_model(self, model_type: str): """Load a model by type""" try: if model_type not in self.model_configs: raise ModelError(f"Unknown model type: {model_type}") if model_type in self.loaded_models: return self.loaded_models[model_type] config = self.model_configs[model_type] logger.info(f"Loading {model_type} model...") if model_type == "code_generator": tokenizer = config["tokenizer"].from_pretrained( config["model_id"], **config["kwargs"] ) model = config["model"].from_pretrained( config["model_id"], **config["kwargs"] ) self.loaded_models[model_type] = (model, tokenizer) elif model_type == "image_processor": processor = config["processor"].from_pretrained( config["model_id"], **config["kwargs"] ) model = config["model"].from_pretrained( config["model_id"], **config["kwargs"] ) self.loaded_models[model_type] = (model, processor) logger.info(f"{model_type} model loaded successfully") return self.loaded_models[model_type] except Exception as e: raise ModelError(f"Error loading {model_type} model: {str(e)}") def unload_model(self, model_type: str): """Unload a model to free memory""" if model_type in self.loaded_models: del self.loaded_models[model_type] torch.cuda.empty_cache() logger.info(f"{model_type} model unloaded") class MultimodalRAG: """Multimodal Retrieval-Augmented Generation system""" def __init__(self): """Initialize the multimodal RAG system""" try: self.model_manager = ModelManager() # Load text encoder self.text_encoder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') # Initialize vector store self.vector_store = self._initialize_vector_store() # Load template database self.template_embeddings = {} self._initialize_template_embeddings() except Exception as e: raise ModelError(f"Error initializing MultimodalRAG: {str(e)}") def _initialize_vector_store(self) -> faiss.IndexFlatL2: """Initialize FAISS vector store""" combined_dim = 768 + 384 # BLIP (768) + text (384) return faiss.IndexFlatL2(combined_dim) def _initialize_template_embeddings(self): """Initialize template embeddings""" try: template_path = TEMPLATE_DIR / "template_embeddings.npz" if template_path.exists(): data = np.load(template_path) self.template_embeddings = { name: embedding for name, embedding in data.items() } except Exception as e: logger.error(f"Error loading template embeddings: {e}") def save_template_embeddings(self): """Save template embeddings to disk""" try: template_path = TEMPLATE_DIR / "template_embeddings.npz" np.savez( template_path, **self.template_embeddings ) except Exception as e: logger.error(f"Error saving template embeddings: {e}") def encode_image(self, image: Image.Image) -> np.ndarray: """Encode image using BLIP""" try: model, processor = self.model_manager.load_model("image_processor") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): image_features = model.get_image_features(**inputs) return image_features.detach().numpy() except Exception as e: raise ModelError(f"Error encoding image: {str(e)}") def encode_text(self, text: str) -> np.ndarray: """Encode text using sentence-transformers""" try: return self.text_encoder.encode(text) except Exception as e: raise ModelError(f"Error encoding text: {str(e)}") def generate_code(self, description: str, template_code: str) -> str: """Generate code using StarCoder""" try: model, tokenizer = self.model_manager.load_model("code_generator") prompt = f""" # Task: Generate a Gradio interface based on the description # Description: {description} # Base template: {template_code} # Generate a customized version of the template that implements the description. # Only output the Python code, no explanations. ```python """ inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( inputs.input_ids, max_length=2048, temperature=0.2, top_p=0.95, do_sample=True, pad_token_id=tokenizer.eos_token_id ) generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) # Clean and format the generated code generated_code = self._clean_generated_code(generated_code) return CodeFormatter.format_code(generated_code) except Exception as e: raise GenerationError(f"Error generating code: {str(e)}") def _clean_generated_code(self, code: str) -> str: """Clean and format generated code""" # Extract code between triple backticks if present if "```python" in code: code = code.split("```python")[1].split("```")[0] elif "```" in code: code = code.split("```")[1].split("```")[0] code = code.strip() return CodeFormatter.cleanup_code(code) def find_similar_template( self, screenshot: Optional[Image.Image], description: str ) -> Tuple[str, Template]: """Find most similar template based on image and description""" try: # Get embeddings text_embedding = self.encode_text(description) if screenshot: img_embedding = self.encode_image(screenshot) query_embedding = np.concatenate([ img_embedding.flatten(), text_embedding ]) else: # If no image, duplicate text embedding to match dimensions query_embedding = np.concatenate([ text_embedding, text_embedding ]) # Search in vector store D, I = self.vector_store.search( np.array([query_embedding]), k=1 ) # Get template name from index template_names = list(self.template_embeddings.keys()) template_name = template_names[I[0][0]] # Load template template_path = TEMPLATE_DIR / f"{template_name}.json" with open(template_path, 'r') as f: template_data = json.load(f) template = Template(**template_data) return template_name, template except Exception as e: raise ModelError(f"Error finding similar template: {str(e)}") def generate_interface( self, screenshot: Optional[Image.Image], description: str ) -> str: """Generate complete interface based on input""" try: # Find similar template template_name, template = self.find_similar_template( screenshot, description ) # Generate customized code custom_code = self.generate_code( description, template.code ) return custom_code except Exception as e: raise GenerationError(f"Error generating interface: {str(e)}") def cleanup(self): """Cleanup resources""" try: # Save template embeddings self.save_template_embeddings() # Unload models self.model_manager.unload_model("code_generator") self.model_manager.unload_model("image_processor") # Clear CUDA cache torch.cuda.empty_cache() except Exception as e: logger.error(f"Error during cleanup: {e}") class TemplateManager: """Manages Gradio interface templates""" def __init__(self, template_dir: Path = TEMPLATE_DIR): self.template_dir = template_dir self.template_dir.mkdir(exist_ok=True) self.templates: Dict[str, Template] = {} self.load_templates() def load_templates(self): """Load all templates from directory""" try: # Load built-in templates self.templates.update(self._get_builtin_templates()) # Load custom templates for template_file in self.template_dir.glob("*.json"): try: with open(template_file, 'r', encoding='utf-8') as f: template_data = json.load(f) name = template_file.stem self.templates[name] = Template(**template_data) except Exception as e: logger.error(f"Error loading template {template_file}: {e}") except Exception as e: logger.error(f"Error loading templates: {e}") def _get_builtin_templates(self) -> Dict[str, Template]: """Get built-in templates""" return { "image_classifier": Template( code=""" import gradio as gr import numpy as np from PIL import Image def classify_image(image): if image is None: return {"error": 1.0} # Add classification logic here return {"class1": 0.8, "class2": 0.2} with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# Image Classifier") with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil") classify_btn = gr.Button("Classify") with gr.Column(): output_labels = gr.Label() classify_btn.click( fn=classify_image, inputs=input_image, outputs=output_labels ) if __name__ == "__main__": demo.launch() """, description="Basic image classification interface", components=["Image", "Button", "Label"], metadata={"category": "computer_vision"} ), "text_analyzer": Template( code=""" import gradio as gr import numpy as np def analyze_text(text, options): if not text: return "Please enter some text" results = [] if "word_count" in options: results.append(f"Word count: {len(text.split())}") if "char_count" in options: results.append(f"Character count: {len(text)}") if "sentiment" in options: # Add sentiment analysis logic here results.append("Sentiment: Neutral") return "\\n".join(results) with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# Text Analysis Tool") with gr.Row(): with gr.Column(): input_text = gr.Textbox( label="Input Text", placeholder="Enter text to analyze...", lines=5 ) options = gr.CheckboxGroup( choices=["word_count", "char_count", "sentiment"], label="Analysis Options", value=["word_count"] ) analyze_btn = gr.Button("Analyze") with gr.Column(): output_text = gr.Textbox( label="Analysis Results", lines=5 ) analyze_btn.click( fn=analyze_text, inputs=[input_text, options], outputs=output_text ) if __name__ == "__main__": demo.launch() """, description="Text analysis interface with multiple options", components=["Textbox", "CheckboxGroup", "Button"], metadata={"category": "nlp"} ) } def save_template(self, name: str, template: Template) -> bool: """Save new template""" try: template_path = self.template_dir / f"{name}.json" template_dict = { "code": template.code, "description": template.description, "components": template.components, "metadata": template.metadata, "version": template.version } with open(template_path, 'w', encoding='utf-8') as f: json.dump(template_dict, f, indent=4) self.templates[name] = template return True except Exception as e: logger.error(f"Error saving template {name}: {e}") return False def get_template(self, name: str) -> Optional[Template]: """Get template by name""" return self.templates.get(name) def list_templates(self, category: Optional[str] = None) -> List[Dict[str, Any]]: """List all available templates with optional category filter""" templates_list = [] for name, template in self.templates.items(): if category and template.metadata.get("category") != category: continue templates_list.append({ "name": name, "description": template.description, "components": template.components, "category": template.metadata.get("category", "general") }) return templates_list class InterfaceAnalyzer: """Analyzes Gradio interfaces""" @staticmethod def extract_components(code: str) -> List[ComponentConfig]: """Extract components from code""" components = [] try: tree = ast.parse(code) for node in ast.walk(tree): if isinstance(node, ast.Call): if isinstance(node.func, ast.Attribute): if hasattr(node.func.value, 'id') and node.func.value.id == 'gr': component_type = node.func.attr if hasattr(ComponentType, component_type.upper()): # Extract component properties properties = {} label = None events = [] # Get properties from keywords for keyword in node.keywords: if keyword.arg == 'label': try: label = ast.literal_eval(keyword.value) except: label = None else: try: properties[keyword.arg] = ast.literal_eval(keyword.value) except: properties[keyword.arg] = None # Look for event handlers parent = InterfaceAnalyzer._find_parent_assign(tree, node) if parent: events = InterfaceAnalyzer._find_component_events(tree, parent) components.append(ComponentConfig( type=ComponentType[component_type.upper()], label=label or component_type, properties=properties, events=events )) except Exception as e: logger.error(f"Error extracting components: {e}") return components @staticmethod def _find_parent_assign(tree: ast.AST, node: ast.Call) -> Optional[ast.AST]: """Find the assignment node for a component""" for potential_parent in ast.walk(tree): if isinstance(potential_parent, ast.Assign): for child in ast.walk(potential_parent.value): if child == node: return potential_parent return None @staticmethod def _find_component_events(tree: ast.AST, assign_node: ast.Assign) -> List[str]: """Find events attached to a component""" events = [] component_name = assign_node.targets[0].id for node in ast.walk(tree): if isinstance(node, ast.Call): if isinstance(node.func, ast.Attribute): if hasattr(node.func.value, 'id') and node.func.value.id == component_name: events.append(node.func.attr) return events @staticmethod def analyze_interface_structure(code: str) -> Dict[str, Any]: """Analyze interface structure""" try: # Extract components components = InterfaceAnalyzer.extract_components(code) # Analyze functions functions = [] tree = ast.parse(code) for node in ast.walk(tree): if isinstance(node, ast.FunctionDef): functions.append({ "name": node.name, "args": [arg.arg for arg in node.args.args], "returns": InterfaceAnalyzer._get_return_type(node) }) # Analyze dependencies dependencies = set() for node in ast.walk(tree): if isinstance(node, ast.Import): for name in node.names: dependencies.add(name.name) elif isinstance(node, ast.ImportFrom): if node.module: dependencies.add(node.module) return { "components": [ { "type": comp.type.value, "label": comp.label, "properties": comp.properties, "events": comp.events } for comp in components ], "functions": functions, "dependencies": list(dependencies) } except Exception as e: logger.error(f"Error analyzing interface: {e}") return {} @staticmethod def _get_return_type(node: ast.FunctionDef) -> str: """Get function return type if specified""" if node.returns: return ast.unparse(node.returns) return "Any" class PreviewManager: """Manages interface previews""" def __init__(self): self.current_process: Optional[subprocess.Popen] = None self.preview_port = DEFAULT_PORT self._lock = threading.Lock() def start_preview(self, code: str) -> Tuple[bool, str]: """Start preview in a separate process""" with self._lock: try: self.stop_preview() # Create temporary module module_path = create_temp_module(code) # Start new process self.current_process = subprocess.Popen( ['python', module_path], stdout=subprocess.PIPE, stderr=subprocess.PIPE ) # Wait for server to start time.sleep(2) # Check if process is still running if self.current_process.poll() is not None: stdout, stderr = self.current_process.communicate() error_msg = stderr.decode('utf-8') raise RuntimeError(f"Preview failed to start: {error_msg}") return True, f"http://localhost:{self.preview_port}" except Exception as e: return False, str(e) def stop_preview(self): """Stop current preview process""" if self.current_process: self.current_process.terminate() try: self.current_process.wait(timeout=5) except subprocess.TimeoutExpired: self.current_process.kill() self.current_process = None def cleanup(self): """Cleanup resources""" self.stop_preview() # Clean up temporary files for temp_file in TEMP_DIR.glob("*.py"): try: temp_file.unlink() except Exception as e: logger.error(f"Error deleting temporary file {temp_file}: {e}") class GradioInterface: """Main Gradio interface builder class""" def __init__(self): """Initialize the Gradio interface builder""" try: self.rag_system = MultimodalRAG() self.template_manager = TemplateManager() self.preview_manager = PreviewManager() self.current_code = "" self.error_log = [] self.interface = self._create_interface() except Exception as e: logger.error(f"Error initializing GradioInterface: {str(e)}") raise def _create_interface(self) -> gr.Blocks: """Create the main Gradio interface""" with gr.Blocks(theme=gr.themes.Soft()) as interface: gr.Markdown("# 🚀 Gradio Interface Builder") with gr.Tabs(): # Design Tab with gr.Tab("Design"): with gr.Row(): with gr.Column(scale=2): # Input Section gr.Markdown("## 📝 Design Your Interface") description = gr.Textbox( label="Description", placeholder="Describe the interface you want to create...", lines=3 ) screenshot = gr.Image( label="Screenshot (optional)", type="pil" ) with gr.Row(): generate_btn = gr.Button("🎨 Generate Interface", variant="primary") clear_btn = gr.Button("🗑ī¸ Clear") # Template Selection gr.Markdown("### 📚 Templates") template_dropdown = gr.Dropdown( choices=self._get_template_choices(), label="Base Template", interactive=True ) with gr.Column(scale=3): # Code Editor code_editor = gr.Code( label="Generated Code", language="python", interactive=True ) with gr.Row(): validate_btn = gr.Button("✅ Validate") format_btn = gr.Button("📋 Format") save_template_btn = gr.Button("💾 Save as Template") validation_output = gr.Markdown() # Preview Tab with gr.Tab("Preview"): with gr.Row(): preview_btn = gr.Button("â–ļī¸ Start Preview", variant="primary") stop_preview_btn = gr.Button("⏚ī¸ Stop Preview") preview_frame = gr.HTML( label="Preview", value="

Click 'Start Preview' to see your interface

" ) preview_status = gr.Markdown() # Analysis Tab with gr.Tab("Analysis"): analyze_btn = gr.Button("🔍 Analyze Interface") with gr.Row(): with gr.Column(): gr.Markdown("### 🧩 Components") components_json = gr.JSON(label="Detected Components") with gr.Column(): gr.Markdown("### 🔄 Functions") functions_json = gr.JSON(label="Interface Functions") with gr.Row(): with gr.Column(): gr.Markdown("### đŸ“Ļ Dependencies") dependencies_json = gr.JSON(label="Required Dependencies") with gr.Column(): gr.Markdown("### 📄 Requirements") requirements_text = gr.Textbox( label="requirements.txt", lines=10 ) # Event handlers generate_btn.click( fn=self._generate_interface, inputs=[description, screenshot, template_dropdown], outputs=[code_editor, validation_output] ) clear_btn.click( fn=self._clear_interface, outputs=[description, screenshot, code_editor, validation_output] ) validate_btn.click( fn=self._validate_code, inputs=[code_editor], outputs=[validation_output] ) format_btn.click( fn=self._format_code, inputs=[code_editor], outputs=[code_editor] ) save_template_btn.click( fn=self._save_as_template, inputs=[code_editor, description], outputs=[template_dropdown, validation_output] ) preview_btn.click( fn=self._start_preview, inputs=[code_editor], outputs=[preview_frame, preview_status] ) stop_preview_btn.click( fn=self._stop_preview, outputs=[preview_frame, preview_status] ) analyze_btn.click( fn=self._analyze_interface, inputs=[code_editor], outputs=[ components_json, functions_json, dependencies_json, requirements_text ] ) # Update template dropdown when templates change template_dropdown.change( fn=self._load_template, inputs=[template_dropdown], outputs=[code_editor] ) return interface def _get_template_choices(self) -> List[str]: """Get list of available templates""" templates = self.template_manager.list_templates() return [""] + [t["name"] for t in templates] def _generate_interface( self, description: str, screenshot: Optional[Image.Image], template_name: str ) -> Tuple[str, str]: """Generate interface code""" try: if template_name: template = self.template_manager.get_template(template_name) if template: code = self.rag_system.generate_code(description, template.code) else: raise ValueError(f"Template {template_name} not found") else: code = self.rag_system.generate_interface(screenshot, description) self.current_code = code return code, "✅ Code generated successfully" except Exception as e: error_msg = f"❌ Error generating interface: {str(e)}" logger.error(error_msg) return "", error_msg def _clear_interface(self) -> Tuple[str, None, str, str]: """Clear all inputs and outputs""" self.current_code = "" return "", None, "", "" def _validate_code(self, code: str) -> str: """Validate code syntax""" is_valid, message = validate_code(code) return f"{'✅' if is_valid else '❌'} {message}" def _format_code(self, code: str) -> str: """Format code""" try: return CodeFormatter.format_code(code) except Exception as e: logger.error(f"Error formatting code: {e}") return code def _save_as_template(self, code: str, description: str) -> Tuple[List[str], str]: """Save current code as template""" try: # Generate template name base_name = "custom_template" counter = 1 name = base_name while self.template_manager.get_template(name): name = f"{base_name}_{counter}" counter += 1 # Create template template = Template( code=code, description=description, components=InterfaceAnalyzer.extract_components(code), metadata={"category": "custom"} ) # Save template if self.template_manager.save_template(name, template): return self._get_template_choices(), f"✅ Template saved as {name}" else: raise Exception("Failed to save template") except Exception as e: error_msg = f"❌ Error saving template: {str(e)}" logger.error(error_msg) return self._get_template_choices(), error_msg def _start_preview(self, code: str) -> Tuple[str, str]: """Start interface preview""" success, result = self.preview_manager.start_preview(code) if success: return f'', "✅ Preview started" else: return "", f"❌ Preview failed: {result}" def _stop_preview(self) -> Tuple[str, str]: """Stop interface preview""" self.preview_manager.stop_preview() return "

Preview stopped

", "✅ Preview stopped" def _load_template(self, template_name: str) -> str: """Load selected template""" if not template_name: return "" template = self.template_manager.get_template(template_name) if template: return template.code return "" def _analyze_interface(self, code: str) -> Tuple[Dict, Dict, Dict, str]: """Analyze interface structure""" try: analysis = InterfaceAnalyzer.analyze_interface_structure(code) # Generate requirements.txt dependencies = analysis.get("dependencies", []) requirements = CodeGenerator.generate_requirements(dependencies) return ( analysis.get("components", {}), analysis.get("functions", {}), {"dependencies": dependencies}, requirements ) except Exception as e: logger.error(f"Error analyzing interface: {e}") return {}, {}, {}, "" def launch(self, **kwargs): """Launch the interface""" try: self.interface.launch(**kwargs) finally: self.cleanup() def cleanup(self): """Cleanup resources""" try: self.preview_manager.cleanup() self.rag_system.cleanup() except Exception as e: logger.error(f"Error during cleanup: {e}") def main(): """Main entry point""" try: # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) # Create and launch interface interface = GradioInterface() interface.launch( share=True, debug=True, server_name="0.0.0.0" ) except Exception as e: logger.error(f"Application error: {e}") raise if __name__ == "__main__": main()