from huggingface_hub import InferenceClient import gradio as gr import random import os import subprocess from typing import Dict, Tuple, List import dotenv import json from rich import print as rprint from rich.panel import Panel from rich.progress import track from rich.table import Table from rich.prompt import Prompt, Confirm from rich.markdown import Markdown from rich.traceback import install install() # Enable rich tracebacks for easier debugging from huggingface_hub import RepositoryInfo model_info = RepositoryInfo.fetch('huggingface/models/{}/{}'.format(" Meta-Llama-3.1-8B ", MODEL_NAME)) client = InferenceClient(model_info, token=os.environ.get("HF_TOKEN")) # Chat Interface Parameters DEFAULT_TEMPERATURE = 0.9 DEFAULT_MAX_NEW_TOKENS = 2048 DEFAULT_TOP_P = 0.95 DEFAULT_REPETITION_PENALTY = 1.2 # Local Server LOCAL_HOST_PORT = 7860 # --- Agent Roles --- agent_roles: Dict[str, Dict[str, bool]] = { "Web Developer": {"description": "A master of front-end and back-end web development.", "active": False}, "Prompt Engineer": {"description": "An expert in crafting effective prompts for AI models.", "active": False}, "Python Code Developer": {"description": "A skilled Python programmer who can write clean and efficient code.", "active": False}, "Hugging Face Hub Expert": {"description": "A specialist in navigating and utilizing the Hugging Face Hub.", "active": False}, "AI-Powered Code Assistant": {"description": "An AI assistant that can help with coding tasks and provide code snippets.", "active": False}, } # --- Initial Prompt --- initial_prompt = """ You are an expert agent cluster, consisting of a Web Developer, a Prompt Engineer, a Python Code Developer, a Hugging Face Hub Expert, and an AI-Powered Code Assistant. Respond with complete program coding to client requests. Use your combined expertise to research information and explain it clearly. Don't answer solely based on what you already know. Always perform a search before providing a response. In special cases, like when the user specifies a page to read, there's no need to search. Read the provided page and answer the user's question accordingly. If you find limited information from search results, try these options: - Click on the links of the search results to access and read the content of each page. - Change your search query and perform a new search. Users are busy, so provide direct answers. BAD ANSWER EXAMPLE - Please refer to these pages. - You can write code referring to these pages. - The following page will be helpful. GOOD ANSWER EXAMPLE - This is the complete code: -- complete code here -- - The answer to your question is -- answer here -- List the URLs of the pages you referenced at the end of your answer for verification. Answer in the language used by the user. If the user asks in Japanese, answer in Japanese. If the user asks in Spanish, answer in Spanish. Search in English, especially for programming-related questions. ALWAYS SEARCH IN ENGLISH FOR THOSE. """ # --- Custom CSS --- customCSS = """ #component-7 { height: 1600px; flex-grow: 4; } .gradio-container { display: flex; flex-direction: column; height: 100vh; } .gradio-interface { flex-grow: 1; display: flex; flex-direction: column; } """ # --- Functions --- # Function to toggle the active state of an agent def toggle_agent(agent_name: str) -> str: """Toggles the active state of an agent.""" global agent_roles agent_roles[agent_name]["active"] = not agent_roles[agent_name]["active"] return f"{agent_name} is now {'active' if agent_roles[agent_name]['active'] else 'inactive'}" # Function to get the active agent cluster def get_active_agents() -> List[str]: """Returns a list of active agents.""" return [agent for agent, is_active in agent_roles.items() if is_active] # Function to execute code def run_code(code: str) -> str: """Executes the provided code and returns the output.""" try: output = subprocess.check_output( ['python', '-c', code], stderr=subprocess.STDOUT, universal_newlines=True, ) return output except subprocess.CalledProcessError as e: return f"Error: {e.output}" # Function to format the prompt def format_prompt(message: str, history: list[Tuple[str, str]], agent_roles: list[str]) -> str: """Formats the prompt with the selected agent roles and conversation history.""" prompt = initial_prompt # Use the global initial prompt for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt # Function to generate a response def generate(prompt: str, history: list[Tuple[str, str]], agent_roles: list[str], temperature: float = DEFAULT_TEMPERATURE, max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, top_p: float = DEFAULT_TOP_P, repetition_penalty: float = DEFAULT_REPETITION_PENALTY) -> str: """Generates a response using the selected agent roles and parameters.""" temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=random.randint(0, 10**7), ) formatted_prompt = format_prompt(prompt, history, agent_roles) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output # Function to handle user input and generate responses def chat_interface(message: str, history: list[Tuple[str, str]], temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float) -> Tuple[str, str]: """Handles user input and generates responses.""" if message.startswith("python"): # User entered code, execute it code = message[9:-3] output = run_code(code) return (message, output) else: # User entered a normal message, generate a response active_agents = get_active_agents() response = generate(message, history, active_agents, temperature, max_new_tokens, top_p, repetition_penalty) return (message, response) # Function to create a new web app instance def create_web_app(app_name: str, code: str) -> None: """Creates a new web app instance with the given name and code.""" # Create a new directory for the app os.makedirs(app_name, exist_ok=True) # Create the app.py file with open(os.path.join(app_name, 'app.py'), 'w') as f: f.write(code) # Create the requirements.txt file with open(os.path.join(app_name, 'requirements.txt'), 'w') as f: f.write("gradio\nhuggingface_hub\nrich") # Print a success message print(f"Web app '{app_name}' created successfully!") # Function to handle the "Create Web App" button click def create_web_app_button_click(app_name: str, code: str) -> str: """Handles the "Create Web App" button click.""" # Validate the app name if not app_name: return "Please enter a valid app name." # Create the web app instance create_web_app(app_name, code) # Return a success message return f"Web app '{app_name}' created successfully!" # Function to handle the "Deploy" button click def deploy_button_click(app_name: str, code: str) -> str: """Handles the "Deploy" button click.""" # Validate the app name if not app_name: return "Please enter a valid app name." # Deploy the web app instance # ... (Implement deployment logic here) # Return a success message return f"Web app '{app_name}' deployed successfully!" # Function to handle the "Local Host" button click def local_host_button_click(app_name: str, code: str) -> str: """Handles the "Local Host" button click.""" # Validate the app name if not app_name: return "Please enter a valid app name." # Start the local server os.chdir(app_name) subprocess.Popen(['gradio', 'run', 'app.py', '--share', '--server_port', str(LOCAL_HOST_PORT)]) # Return a success message return f"Web app '{app_name}' running locally on port {LOCAL_HOST_PORT}!" # Function to handle the "Ship" button click def ship_button_click(app_name: str, code: str) -> str: """Handles the "Ship" button click.""" # Validate the app name if not app_name: return "Please enter a valid app name." # Ship the web app instance # ... (Implement shipping logic here) # Return a success message return f"Web app '{app_name}' shipped successfully!" # --- Gradio Interface --- with gr.Blocks(css=customCSS, theme='ParityError/Interstellar') as demo: gr.Markdown( """ # AI-Powered Code Generation and Web App Creation This application allows you to interact with an AI agent cluster to generate code and create web apps. """ ) # --- Agent Selection --- with gr.Row(): gr.Markdown("## Select Your Agent Cluster") for agent_name, agent_data in agent_roles.items(): button = gr.Button(agent_name, variant="secondary") textbox = gr.Textbox(agent_data["description"], interactive=False) button.click(toggle_agent, inputs=[button], outputs=[textbox]) # --- Chat Interface --- with gr.Row(): gr.Markdown("## Chat with the AI") chatbot = gr.Chatbot() chat_interface_input = gr.Textbox(label="Enter your message", placeholder="Ask me anything!") # Parameters with gr.Accordion("Advanced Parameters", open=False): temperature_slider = gr.Slider( label="Temperature", value=DEFAULT_TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values generate more diverse outputs", ) max_new_tokens_slider = gr.Slider( label="Maximum New Tokens", value=DEFAULT_MAX_NEW_TOKENS, minimum=64, maximum=4096, step=64, interactive=True, info="The maximum number of new tokens", ) top_p_slider = gr.Slider( label="Top-p (Nucleus Sampling)", value=DEFAULT_TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ) repetition_penalty_slider = gr.Slider( label="Repetition Penalty", value=DEFAULT_REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) # Submit Button submit_button = gr.Button("Submit") # Chat Interface Logic submit_button.click( chat_interface, inputs=[ chat_interface_input, chatbot, temperature_slider, max_new_tokens_slider, top_p_slider, repetition_penalty_slider, ], outputs=[ chatbot, ], ) # --- Web App Creation --- with gr.Row(): gr.Markdown("## Create Your Web App") app_name_input = gr.Textbox(label="App Name", placeholder="Enter your app name") code_output = gr.Textbox(label="Code", interactive=False) create_web_app_button = gr.Button("Create Web App") deploy_button = gr.Button("Deploy") local_host_button = gr.Button("Local Host") ship_button = gr.Button("Ship") # Web App Creation Logic create_web_app_button.click( create_web_app_button_click, inputs=[app_name_input, code_output], outputs=[gr.Textbox(label="Status", interactive=False)], ) # Deploy the web app deploy_button.click( deploy_button_click, inputs=[app_name_input, code_output], outputs=[gr.Textbox(label="Status", interactive=False)], ) # Local host the web app local_host_button.click( local_host_button_click, inputs=[app_name_input, code_output], outputs=[gr.Textbox(label="Status", interactive=False)], ) # Ship the web app ship_button.click( ship_button_click, inputs=[app_name_input, code_output], outputs=[gr.Textbox(label="Status", interactive=False)], ) # --- Connect Chat Output to Code Output --- chatbot.change( lambda x: x[-1][1] if x else "", inputs=[chatbot], outputs=[code_output], ) # --- Initialize Hugging Face Client --- client = InferenceClient(repo_id="MODEL_NAME", token=os.environ.get("HF_TOKEN")) # --- Launch Gradio --- demo.queue().launch(debug=True)