Spaces:
Running
Running
File size: 5,798 Bytes
d754f21 a98a37e 8363049 86363d9 d754f21 8363049 d754f21 8363049 d754f21 8363049 5896153 8363049 d754f21 8363049 d754f21 8363049 d754f21 8363049 d754f21 8363049 d754f21 8363049 d754f21 8363049 d754f21 8363049 d754f21 8363049 86363d9 d754f21 5896153 d754f21 86363d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import streamlit as st
import os
import subprocess
from huggingface_hub import cached_download, hf_hub_url
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
import pylint
# Define functions for each feature
# 1. Chat Interface
def chat_interface(input_text):
"""Handles user input in the chat interface.
Args:
input_text: User's input text.
Returns:
The chatbot's response.
"""
# Load the appropriate language model from Hugging Face
model_name = 'google/flan-t5-xl' # Choose a suitable model
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
except EnvironmentError as e:
return f'Error loading model: {e}'
# Generate chatbot response
response = generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text']
return response
# 2. Terminal
def terminal_interface(command):
"""Executes commands in the terminal.
Args:
command: User's command.
Returns:
The terminal output.
"""
# Execute command
try:
process = subprocess.run(command.split(), capture_output=True, text=True)
output = process.stdout
except Exception as e:
output = f'Error: {e}'
return output
# 3. Code Editor
def code_editor_interface(code):
"""Provides code completion, formatting, and linting in the code editor.
Args:
code: User's code.
Returns:
Formatted and linted code.
"""
# Format code using black
try:
formatted_code = black.format_str(code, mode=black.FileMode())
except black.InvalidInput:
formatted_code = code # Keep original code if formatting fails
# Lint code using pylint
try:
pylint_output = pylint.run(formatted_code, output=None)
lint_results = pylint_output.linter.stats.get('global_note', 0)
lint_message = f"Pylint score: {lint_results:.2f}"
except Exception as e:
lint_message = f"Pylint error: {e}"
return formatted_code, lint_message
# 4. Workspace
def workspace_interface(project_name):
"""Manages projects, files, and resources in the workspace.
Args:
project_name: Name of the new project.
Returns:
Project creation status.
"""
# Create project directory
try:
os.makedirs(os.path.join('projects', project_name))
status = f'Project \"{project_name}\" created successfully.'
except FileExistsError:
status = f'Project \"{project_name}\" already exists.'
return status
# 5. AI-Infused Tools
# Define custom AI-powered tools using Hugging Face models
# Example: Text summarization tool
def summarize_text(text):
"""Summarizes a given text using a Hugging Face model.
Args:
text: Text to be summarized.
Returns:
Summarized text.
"""
summarizer = pipeline('summarization', model='facebook/bart-large-cnn')
summary = summarizer(text, max_length=100, min_length=30)[0]['summary_text']
return summary
# 6. Code Generation
def generate_code(idea):
"""Generates code based on a given idea using the bigscience/T0_3B model.
Args:
idea: The idea for the code to be generated.
Returns:
The generated code as a string.
"""
# Load the code generation model
model_name = 'bigscience/T0_3B' # Choose your model
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Generate the code
input_text = f"""
# Idea: {idea}
# Code:
"""
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_sequences = model.generate(
input_ids=input_ids,
max_length=1024,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True,
temperature=0.7, # Adjust temperature for creativity
top_k=50, # Adjust top_k for diversity
)
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
# Remove the prompt and formatting
generated_code = generated_code.split("\n# Code:")[1].strip()
return generated_code
# Streamlit App
st.title("CodeCraft: Your AI-Powered Development Toolkit")
# Chat Interface
st.header("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
chat_response = chat_interface(chat_input)
st.write(f"CodeCraft: {chat_response}")
# Terminal Interface
st.header("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
terminal_output = terminal_interface(terminal_input)
st.code(terminal_output, language="bash")
# Code Editor Interface
st.header("Code Editor")
code_editor = st.text_area("Write your code:", height=300)
if st.button("Format & Lint"):
formatted_code, lint_message = code_editor_interface(code_editor)
st.code(formatted_code, language="python")
st.info(lint_message)
# Workspace Interface
st.header("Workspace")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
workspace_status = workspace_interface(project_name)
st.success(workspace_status)
# AI-Infused Tools
st.header("AI-Powered Tools")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
summary = summarize_text(text_to_summarize)
st.write(f"Summary: {summary}")
# Code Generation
st.header("Code Generation")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate Code"):
generated_code = generate_code(code_idea)
st.code(generated_code, language="python") |