Spaces:
Running
Running
acecalisto3
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -21,6 +21,7 @@ from agent import (
|
|
21 |
)
|
22 |
from utils import parse_action, parse_file_content, read_python_module_structure
|
23 |
from datetime import datetime
|
|
|
24 |
now = datetime.now()
|
25 |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
|
26 |
|
@@ -30,31 +31,21 @@ client = InferenceClient(
|
|
30 |
|
31 |
############################################
|
32 |
|
33 |
-
|
34 |
VERBOSE = True
|
35 |
MAX_HISTORY = 100
|
36 |
-
#MODEL = "gpt-3.5-turbo" # "gpt-4"
|
37 |
-
|
38 |
|
39 |
def format_prompt(message, history):
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
prompt_template,
|
51 |
-
stop_tokens,
|
52 |
-
max_tokens,
|
53 |
-
purpose,
|
54 |
-
**prompt_kwargs,
|
55 |
-
):
|
56 |
-
seed = random.randint(1,1111111111111111)
|
57 |
-
print (seed)
|
58 |
generate_kwargs = dict(
|
59 |
temperature=1.0,
|
60 |
max_new_tokens=2096,
|
@@ -64,7 +55,6 @@ def run_gpt(
|
|
64 |
seed=seed,
|
65 |
)
|
66 |
|
67 |
-
|
68 |
content = PREFIX.format(
|
69 |
date_time_str=date_time_str,
|
70 |
purpose=purpose,
|
@@ -72,10 +62,9 @@ def run_gpt(
|
|
72 |
) + prompt_template.format(**prompt_kwargs)
|
73 |
if VERBOSE:
|
74 |
print(LOG_PROMPT.format(content))
|
75 |
-
|
76 |
-
|
77 |
-
#formatted_prompt = format_prompt(f
|
78 |
-
#formatted_prompt = format_prompt(f'{content}', history)
|
79 |
|
80 |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
81 |
resp = ""
|
@@ -86,7 +75,6 @@ def run_gpt(
|
|
86 |
print(LOG_RESPONSE.format(resp))
|
87 |
return resp
|
88 |
|
89 |
-
|
90 |
def compress_history(purpose, task, history, directory):
|
91 |
resp = run_gpt(
|
92 |
COMPRESS_HISTORY_PROMPT,
|
@@ -98,19 +86,18 @@ def compress_history(purpose, task, history, directory):
|
|
98 |
)
|
99 |
history = "observation: {}\n".format(resp)
|
100 |
return history
|
101 |
-
|
102 |
def call_search(purpose, task, history, directory, action_input):
|
103 |
print("CALLING SEARCH")
|
104 |
try:
|
105 |
-
|
106 |
if "http" in action_input:
|
107 |
if "<" in action_input:
|
108 |
action_input = action_input.strip("<")
|
109 |
if ">" in action_input:
|
110 |
action_input = action_input.strip(">")
|
111 |
-
|
112 |
response = i_s(action_input)
|
113 |
-
#response = google(search_return)
|
114 |
print(response)
|
115 |
history += "observation: search result is: {}\n".format(response)
|
116 |
else:
|
@@ -135,11 +122,10 @@ def call_main(purpose, task, history, directory, action_input):
|
|
135 |
if line.startswith("thought: "):
|
136 |
history += "{}\n".format(line)
|
137 |
elif line.startswith("action: "):
|
138 |
-
|
139 |
action_name, action_input = parse_action(line)
|
140 |
-
print
|
141 |
-
print
|
142 |
-
|
143 |
history += "{}\n".format(line)
|
144 |
if "COMPLETE" in action_name or "COMPLETE" in action_input:
|
145 |
task = "END"
|
@@ -148,12 +134,11 @@ def call_main(purpose, task, history, directory, action_input):
|
|
148 |
return action_name, action_input, history, task
|
149 |
else:
|
150 |
history += "{}\n".format(line)
|
151 |
-
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
|
152 |
-
|
153 |
-
#return action_name, action_input, history, task
|
154 |
-
#assert False, "unknown action: {}".format(line)
|
155 |
-
return "MAIN", None, history, task
|
156 |
|
|
|
|
|
|
|
157 |
|
158 |
def call_set_task(purpose, task, history, directory, action_input):
|
159 |
task = run_gpt(
|
@@ -176,46 +161,43 @@ NAME_TO_FUNC = {
|
|
176 |
"UPDATE-TASK": call_set_task,
|
177 |
"SEARCH": call_search,
|
178 |
"COMPLETE": end_fn,
|
179 |
-
|
180 |
}
|
181 |
|
182 |
def run_action(purpose, task, history, directory, action_name, action_input):
|
183 |
print(f'action_name::{action_name}')
|
184 |
try:
|
185 |
if "RESPONSE" in action_name or "COMPLETE" in action_name:
|
186 |
-
action_name="COMPLETE"
|
187 |
-
task="END"
|
188 |
return action_name, "COMPLETE", history, task
|
189 |
-
|
190 |
# compress the history when it is long
|
191 |
if len(history.split("\n")) > MAX_HISTORY:
|
192 |
if VERBOSE:
|
193 |
print("COMPRESSING HISTORY")
|
194 |
history = compress_history(purpose, task, history, directory)
|
195 |
if not action_name in NAME_TO_FUNC:
|
196 |
-
action_name="MAIN"
|
197 |
if action_name == "" or action_name == None:
|
198 |
-
action_name="MAIN"
|
199 |
assert action_name in NAME_TO_FUNC
|
200 |
-
|
201 |
print("RUN: ", action_name, action_input)
|
202 |
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
|
203 |
except Exception as e:
|
204 |
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
|
205 |
-
|
206 |
return "MAIN", None, history, task
|
207 |
|
208 |
-
def run(purpose,history):
|
209 |
-
|
210 |
-
#print(
|
211 |
-
|
212 |
-
|
213 |
-
directory="./"
|
214 |
if history:
|
215 |
-
history=str(history).strip("[]")
|
216 |
if not history:
|
217 |
history = ""
|
218 |
-
|
219 |
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
220 |
action_input = None
|
221 |
while True:
|
@@ -237,40 +219,38 @@ def run(purpose,history):
|
|
237 |
action_input,
|
238 |
)
|
239 |
yield (history)
|
240 |
-
#yield ("",[(purpose,history)])
|
241 |
if task == "END":
|
242 |
return (history)
|
243 |
-
#return ("", [(purpose,history)])
|
244 |
-
|
245 |
-
|
246 |
|
247 |
################################################
|
248 |
|
249 |
def format_prompt(message, history):
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
257 |
"WEB_DEV",
|
258 |
"AI_SYSTEM_PROMPT",
|
259 |
"PYTHON_CODE_DEV"
|
260 |
]
|
261 |
-
def generate(
|
262 |
-
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
263 |
-
):
|
264 |
-
seed = random.randint(1,1111111111111111)
|
265 |
|
266 |
-
|
|
|
|
|
|
|
267 |
if agent_name == "WEB_DEV":
|
268 |
agent = prompts.WEB_DEV
|
269 |
if agent_name == "AI_SYSTEM_PROMPT":
|
270 |
agent = prompts.AI_SYSTEM_PROMPT
|
271 |
if agent_name == "PYTHON_CODE_DEV":
|
272 |
-
agent = prompts.PYTHON_CODE_DEV
|
273 |
-
system_prompt=agent
|
274 |
temperature = float(temperature)
|
275 |
if temperature < 1e-2:
|
276 |
temperature = 1e-2
|
@@ -294,14 +274,13 @@ def generate(
|
|
294 |
yield output
|
295 |
return output
|
296 |
|
297 |
-
|
298 |
-
additional_inputs=[
|
299 |
gr.Dropdown(
|
300 |
label="Agents",
|
301 |
-
choices=[s for s in
|
302 |
-
value=
|
303 |
interactive=True,
|
304 |
-
|
305 |
gr.Textbox(
|
306 |
label="System Prompt",
|
307 |
max_lines=1,
|
@@ -314,143 +293,48 @@ additional_inputs=[
|
|
314 |
maximum=1.0,
|
315 |
step=0.05,
|
316 |
interactive=True,
|
317 |
-
info="Higher values
|
318 |
),
|
319 |
-
|
320 |
gr.Slider(
|
321 |
-
label="Max
|
322 |
-
value=
|
323 |
-
minimum=
|
324 |
-
maximum=
|
325 |
step=64,
|
326 |
interactive=True,
|
327 |
-
info="The maximum
|
328 |
),
|
329 |
gr.Slider(
|
330 |
-
label="Top-p (
|
331 |
value=0.90,
|
332 |
minimum=0.0,
|
333 |
maximum=1,
|
334 |
step=0.05,
|
335 |
interactive=True,
|
336 |
-
info="Higher values sample more low-probability tokens",
|
337 |
),
|
338 |
gr.Slider(
|
339 |
-
label="Repetition
|
340 |
value=1.2,
|
341 |
minimum=1.0,
|
342 |
maximum=2.0,
|
343 |
step=0.05,
|
344 |
interactive=True,
|
345 |
-
info="Penalize repeated tokens",
|
346 |
-
)
|
347 |
-
|
348 |
-
|
349 |
]
|
350 |
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
]
|
364 |
|
365 |
-
|
366 |
-
gr.ChatInterface(
|
367 |
-
fn=run,
|
368 |
-
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
369 |
-
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
|
370 |
-
examples=examples,
|
371 |
-
concurrency_limit=20,
|
372 |
-
with gr.Blocks() as ifacea:
|
373 |
-
gr.HTML("""TEST""")
|
374 |
-
ifacea.launch()
|
375 |
-
).launch()
|
376 |
-
with gr.Blocks() as iface:
|
377 |
-
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
378 |
-
chatbot=gr.Chatbot()
|
379 |
-
msg = gr.Textbox()
|
380 |
-
with gr.Row():
|
381 |
-
submit_b = gr.Button()
|
382 |
-
clear = gr.ClearButton([msg, chatbot])
|
383 |
-
submit_b.click(run, [msg,chatbot],[msg,chatbot])
|
384 |
-
msg.submit(run, [msg, chatbot], [msg, chatbot])
|
385 |
-
iface.launch()
|
386 |
-
'''
|
387 |
-
gr.ChatInterface(
|
388 |
-
fn=run,
|
389 |
-
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
390 |
-
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
|
391 |
-
examples=examples,
|
392 |
-
concurrency_limit=20,
|
393 |
-
).launch(show_api=False)
|
394 |
-
|
395 |
-
|
396 |
-
Implementation of Next Steps:
|
397 |
-
|
398 |
-
Terminal Integration:
|
399 |
-
|
400 |
-
Install Libraries: Install either streamlit-terminal or gradio-terminal depending on your chosen framework.
|
401 |
-
Integrate the Terminal: Use the library's functions to embed a terminal component within your Streamlit or Gradio app.
|
402 |
-
Capture Input: Capture the user's input from the terminal and pass it to your command execution function.
|
403 |
-
Display Output: Display the output of the terminal commands, including both standard output and errors.
|
404 |
-
Code Generation:
|
405 |
-
|
406 |
-
LLM Selection: Choose a Hugging Face Transformer model that is suitable for code generation (e.g., google/flan-t5-xl, Salesforce/codet5-base, microsoft/CodeGPT-small).
|
407 |
-
Prompt Engineering: Develop effective prompts for the LLM to generate code based on natural language instructions.
|
408 |
-
Code Translation Function: Create a function that takes natural language input, passes it to the LLM with the appropriate prompt, and then returns the generated code.
|
409 |
-
Code Correction: You can explore ways to automatically correct code errors, perhaps using a combination of syntax checking and LLM assistance.
|
410 |
-
Workspace Explorer:
|
411 |
-
|
412 |
-
Streamlit or Gradio Filesystem Access: Use Streamlit's st.file_uploader or Gradio's gr.File component to allow users to upload files.
|
413 |
-
File Management: Implement functions to create, edit, and delete files and directories within the workspace.
|
414 |
-
Display Files: Use Streamlit's st.code or Gradio's gr.File component to display the contents of files in the workspace.
|
415 |
-
Directory Structure: Display the directory structure of the workspace using a tree-like representation.
|
416 |
-
Dependency Management:
|
417 |
-
|
418 |
-
Package Installation: Create a function that takes a package name as input, installs it using pip, and updates the requirements.txt file.
|
419 |
-
Workspace Population: Develop a function to create files and directories in the workspace based on installed packages.
|
420 |
-
Application Build and Launch:
|
421 |
-
|
422 |
-
Build Logic: Develop a function to build the web app based on the user's code and dependencies.
|
423 |
-
Launch Functionality: Implement a mechanism to launch the built app.
|
424 |
-
Error Correction: Identify and correct errors during the build and launch process.
|
425 |
-
Automated Assistance: Provide automated assistance during the build and launch process, with a gradient slider to adjust the level of user override.
|
426 |
-
|
427 |
-
Recommendations, Enhancements, Optimizations, and Workflow:
|
428 |
-
|
429 |
-
1. LLM Selection for Code Generation:
|
430 |
-
* **Google/Flan-T5-XL:** Excellent for code generation, particularly for Python.
|
431 |
-
* **Salesforce/CodeT5-Base:** Strong for code generation, with a focus on code summarization and translation.
|
432 |
-
* **Microsoft/CodeGPT-Small:** A smaller model that is suitable for code generation tasks, especially if you have limited computational resources.
|
433 |
-
|
434 |
-
2. Prompt Engineering for Code Generation:
|
435 |
-
* **Contextual Prompts:** Provide the LLM with as much context as possible, including the desired programming language, libraries, and any specific requirements.
|
436 |
-
* **Code Snippets:** If possible, include code snippets as part of the prompt to guide the LLM's code generation.
|
437 |
-
* **Iterative Refinement:** Use iterative prompting to refine the generated code. Start with a basic prompt and then provide feedback to the LLM to improve the code.
|
438 |
-
|
439 |
-
3. Workspace Exploration:
|
440 |
-
* **Tree-Like View:** Use a tree-like representation to display the workspace's directory structure.
|
441 |
-
* **Search Functionality:** Implement a search bar to allow users to quickly find specific files or directories.
|
442 |
-
* **Code Highlighting:** Provide code highlighting for files in the workspace to improve readability.
|
443 |
-
|
444 |
-
4. Dependency Management:
|
445 |
-
* **Virtual Environments:** Use virtual environments to isolate project dependencies and prevent conflicts.
|
446 |
-
* **Automatic Updates:** Implement a mechanism to automatically update dependencies when new versions are available.
|
447 |
-
* **Dependency Locking:** Use tools like `pip-tools` or `poetry` to lock dependencies to specific versions, ensuring consistent builds.
|
448 |
-
|
449 |
-
5. Application Build and Launch:
|
450 |
-
* **Build Tool Integration:** Consider integrating a build tool like `poetry` or `pipenv` into your workflow to automate the build process.
|
451 |
-
* **Containerization:** Containerize the app using Docker to ensure consistent deployments across different environments.
|
452 |
-
* **Deployment Automation:** Explore tools like `Heroku`, `AWS Elastic Beanstalk`, or `Google App Engine` to automate the deployment process.
|
453 |
-
|
454 |
-
6. Automated Assistance:
|
455 |
-
* **Error Detection and Correction:** Implement a system that can detect common coding errors and suggest corrections.
|
456 |
-
* **Code Completion:** Use an LLM to provide code completion suggestions as the user types.
|
|
|
21 |
)
|
22 |
from utils import parse_action, parse_file_content, read_python_module_structure
|
23 |
from datetime import datetime
|
24 |
+
|
25 |
now = datetime.now()
|
26 |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
|
27 |
|
|
|
31 |
|
32 |
############################################
|
33 |
|
|
|
34 |
VERBOSE = True
|
35 |
MAX_HISTORY = 100
|
36 |
+
# MODEL = "gpt-3.5-turbo" # "gpt-4"
|
|
|
37 |
|
38 |
def format_prompt(message, history):
|
39 |
+
prompt = "<s>"
|
40 |
+
for user_prompt, bot_response in history:
|
41 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
42 |
+
prompt += f" {bot_response}</s> "
|
43 |
+
prompt += f"[INST] {message} [/INST]"
|
44 |
+
return prompt
|
45 |
+
|
46 |
+
def run_gpt(prompt_template, stop_tokens, max_tokens, purpose, **prompt_kwargs):
|
47 |
+
seed = random.randint(1, 1111111111111111)
|
48 |
+
print(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
generate_kwargs = dict(
|
50 |
temperature=1.0,
|
51 |
max_new_tokens=2096,
|
|
|
55 |
seed=seed,
|
56 |
)
|
57 |
|
|
|
58 |
content = PREFIX.format(
|
59 |
date_time_str=date_time_str,
|
60 |
purpose=purpose,
|
|
|
62 |
) + prompt_template.format(**prompt_kwargs)
|
63 |
if VERBOSE:
|
64 |
print(LOG_PROMPT.format(content))
|
65 |
+
|
66 |
+
# formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
67 |
+
# formatted_prompt = format_prompt(f'{content}', history)
|
|
|
68 |
|
69 |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
70 |
resp = ""
|
|
|
75 |
print(LOG_RESPONSE.format(resp))
|
76 |
return resp
|
77 |
|
|
|
78 |
def compress_history(purpose, task, history, directory):
|
79 |
resp = run_gpt(
|
80 |
COMPRESS_HISTORY_PROMPT,
|
|
|
86 |
)
|
87 |
history = "observation: {}\n".format(resp)
|
88 |
return history
|
89 |
+
|
90 |
def call_search(purpose, task, history, directory, action_input):
|
91 |
print("CALLING SEARCH")
|
92 |
try:
|
|
|
93 |
if "http" in action_input:
|
94 |
if "<" in action_input:
|
95 |
action_input = action_input.strip("<")
|
96 |
if ">" in action_input:
|
97 |
action_input = action_input.strip(">")
|
98 |
+
|
99 |
response = i_s(action_input)
|
100 |
+
# response = google(search_return)
|
101 |
print(response)
|
102 |
history += "observation: search result is: {}\n".format(response)
|
103 |
else:
|
|
|
122 |
if line.startswith("thought: "):
|
123 |
history += "{}\n".format(line)
|
124 |
elif line.startswith("action: "):
|
|
|
125 |
action_name, action_input = parse_action(line)
|
126 |
+
print(f'ACTION_NAME :: {action_name}')
|
127 |
+
print(f'ACTION_INPUT :: {action_input}')
|
128 |
+
|
129 |
history += "{}\n".format(line)
|
130 |
if "COMPLETE" in action_name or "COMPLETE" in action_input:
|
131 |
task = "END"
|
|
|
134 |
return action_name, action_input, history, task
|
135 |
else:
|
136 |
history += "{}\n".format(line)
|
137 |
+
# history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
# return action_name, action_input, history, task
|
140 |
+
# assert False, "unknown action: {}".format(line)
|
141 |
+
return "MAIN", None, history, task
|
142 |
|
143 |
def call_set_task(purpose, task, history, directory, action_input):
|
144 |
task = run_gpt(
|
|
|
161 |
"UPDATE-TASK": call_set_task,
|
162 |
"SEARCH": call_search,
|
163 |
"COMPLETE": end_fn,
|
|
|
164 |
}
|
165 |
|
166 |
def run_action(purpose, task, history, directory, action_name, action_input):
|
167 |
print(f'action_name::{action_name}')
|
168 |
try:
|
169 |
if "RESPONSE" in action_name or "COMPLETE" in action_name:
|
170 |
+
action_name = "COMPLETE"
|
171 |
+
task = "END"
|
172 |
return action_name, "COMPLETE", history, task
|
173 |
+
|
174 |
# compress the history when it is long
|
175 |
if len(history.split("\n")) > MAX_HISTORY:
|
176 |
if VERBOSE:
|
177 |
print("COMPRESSING HISTORY")
|
178 |
history = compress_history(purpose, task, history, directory)
|
179 |
if not action_name in NAME_TO_FUNC:
|
180 |
+
action_name = "MAIN"
|
181 |
if action_name == "" or action_name == None:
|
182 |
+
action_name = "MAIN"
|
183 |
assert action_name in NAME_TO_FUNC
|
184 |
+
|
185 |
print("RUN: ", action_name, action_input)
|
186 |
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
|
187 |
except Exception as e:
|
188 |
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
|
|
|
189 |
return "MAIN", None, history, task
|
190 |
|
191 |
+
def run(purpose, history):
|
192 |
+
# print(purpose)
|
193 |
+
# print(hist)
|
194 |
+
task = None
|
195 |
+
directory = "./"
|
|
|
196 |
if history:
|
197 |
+
history = str(history).strip("[]")
|
198 |
if not history:
|
199 |
history = ""
|
200 |
+
|
201 |
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
202 |
action_input = None
|
203 |
while True:
|
|
|
219 |
action_input,
|
220 |
)
|
221 |
yield (history)
|
222 |
+
# yield ("",[(purpose,history)])
|
223 |
if task == "END":
|
224 |
return (history)
|
225 |
+
# return ("", [(purpose,history)])
|
|
|
|
|
226 |
|
227 |
################################################
|
228 |
|
229 |
def format_prompt(message, history):
|
230 |
+
prompt = "<s>"
|
231 |
+
for user_prompt, bot_response in history:
|
232 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
233 |
+
prompt += f" {bot_response}</s> "
|
234 |
+
prompt += f"[INST] {message} [/INST]"
|
235 |
+
return prompt
|
236 |
+
|
237 |
+
AGENTS = [
|
238 |
"WEB_DEV",
|
239 |
"AI_SYSTEM_PROMPT",
|
240 |
"PYTHON_CODE_DEV"
|
241 |
]
|
|
|
|
|
|
|
|
|
242 |
|
243 |
+
def generate(prompt, history, agent_name=AGENTS[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
|
244 |
+
seed = random.randint(1, 1111111111111111)
|
245 |
+
|
246 |
+
agent = prompts.WEB_DEV
|
247 |
if agent_name == "WEB_DEV":
|
248 |
agent = prompts.WEB_DEV
|
249 |
if agent_name == "AI_SYSTEM_PROMPT":
|
250 |
agent = prompts.AI_SYSTEM_PROMPT
|
251 |
if agent_name == "PYTHON_CODE_DEV":
|
252 |
+
agent = prompts.PYTHON_CODE_DEV
|
253 |
+
system_prompt = agent
|
254 |
temperature = float(temperature)
|
255 |
if temperature < 1e-2:
|
256 |
temperature = 1e-2
|
|
|
274 |
yield output
|
275 |
return output
|
276 |
|
277 |
+
additional_inputs = [
|
|
|
278 |
gr.Dropdown(
|
279 |
label="Agents",
|
280 |
+
choices=[s for s in AGENTS],
|
281 |
+
value=AGENTS[0],
|
282 |
interactive=True,
|
283 |
+
),
|
284 |
gr.Textbox(
|
285 |
label="System Prompt",
|
286 |
max_lines=1,
|
|
|
293 |
maximum=1.0,
|
294 |
step=0.05,
|
295 |
interactive=True,
|
296 |
+
info="Higher values generate more diverse outputs.",
|
297 |
),
|
|
|
298 |
gr.Slider(
|
299 |
+
label="Max New Tokens",
|
300 |
+
value=2048,
|
301 |
+
minimum=64,
|
302 |
+
maximum=4096,
|
303 |
step=64,
|
304 |
interactive=True,
|
305 |
+
info="The maximum number of new tokens to generate.",
|
306 |
),
|
307 |
gr.Slider(
|
308 |
+
label="Top-p (Nucleus Sampling)",
|
309 |
value=0.90,
|
310 |
minimum=0.0,
|
311 |
maximum=1,
|
312 |
step=0.05,
|
313 |
interactive=True,
|
314 |
+
info="Higher values sample more low-probability tokens.",
|
315 |
),
|
316 |
gr.Slider(
|
317 |
+
label="Repetition Penalty",
|
318 |
value=1.2,
|
319 |
minimum=1.0,
|
320 |
maximum=2.0,
|
321 |
step=0.05,
|
322 |
interactive=True,
|
323 |
+
info="Penalize repeated tokens.",
|
324 |
+
)
|
|
|
|
|
325 |
]
|
326 |
|
327 |
+
customCSS = """
|
328 |
+
#component-7 {
|
329 |
+
height: 1600px;
|
330 |
+
flex-grow: 4;
|
331 |
+
}
|
332 |
+
"""
|
333 |
+
|
334 |
+
with gr.Blocks(theme='ParityError/Interstellar') as demo:
|
335 |
+
gr.ChatInterface(
|
336 |
+
generate,
|
337 |
+
additional_inputs=additional_inputs,
|
338 |
+
)
|
|
|
339 |
|
340 |
+
demo.queue().launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|