acecalisto3 commited on
Commit
3e4e7ef
·
verified ·
1 Parent(s): f6e7cfb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +468 -253
app.py CHANGED
@@ -1,259 +1,474 @@
1
  import os
2
- from huggingface_hub import InferenceClient
3
- import gradio as gr
4
- import random
5
- from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
6
  import subprocess
7
- import threading
8
- import time
9
  import json
 
 
 
10
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- # Initialize the session state
13
- if 'current_state' not in st.session_state:
14
- st.session_state.current_state = None
15
- # Initialize the InferenceClient for Mixtral-8x7B-Instruct-v0.1
16
- client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
17
-
18
- # Load the model and tokenizer from a different repository
19
- model_name = "bigscience/bloom-1b7"
20
- model = AutoModelForCausalLM.from_pretrained(model_name)
21
- tokenizer = AutoTokenizer.from_pretrained(model_name)
22
-
23
- from agent.prompts import (
24
- AI_SYSTEM_PROMPT,
25
- CODE_REVIEW_ASSISTANT,
26
- CONTENT_WRITER_EDITOR,
27
- PYTHON_CODE_DEV,
28
- WEB_DEV,
29
- QUESTION_GENERATOR,
30
- HUGGINGFACE_FILE_DEV,
31
- )
32
- from agent.utils import parse_action, parse_file_content, read_python_module_structure
33
-
34
- # Hugging Face model and tokenizer setup
35
- model_name = "gpt2"
36
- tokenizer = AutoTokenizer.from_pretrained(model_name)
37
- model = AutoModelForCausalLM.from_pretrained(model_name)
38
- generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
39
-
40
- VERBOSE = False
41
- MAX_HISTORY = 100
42
-
43
- def run_gpt(prompt_template, stop_tokens, max_tokens, module_summary, purpose, **prompt_kwargs):
44
- content = PREFIX.format(
45
- module_summary=module_summary,
46
- purpose=purpose,
47
- ) + prompt_template.format(**prompt_kwargs)
48
- if VERBOSE:
49
- st.write(LOG_PROMPT.format(content))
50
- resp = generator(content, max_length=max_tokens, stop=stop_tokens)[0]["generated_text"]
51
- if VERBOSE:
52
- st.write(LOG_RESPONSE.format(resp))
53
- return resp
54
-
55
- def compress_history(purpose, task, history, directory):
56
- module_summary, _, _ = read_python_module_structure(directory)
57
- resp = run_gpt(
58
- COMPRESS_HISTORY_PROMPT,
59
- stop_tokens=["observation:", "task:", "action:", "thought:"],
60
- max_tokens=512,
61
- module_summary=module_summary,
62
- purpose=purpose,
63
- task=task,
64
- history=history,
65
- )
66
- history = "observation: {}\n".format(resp)
67
- return history
68
-
69
- def call_main(purpose, task, history, directory, action_input):
70
- module_summary, _, _ = read_python_module_structure(directory)
71
- resp = run_gpt(
72
- ACTION_PROMPT,
73
- stop_tokens=["observation:", "task:"],
74
- max_tokens=256,
75
- module_summary=module_summary,
76
- purpose=purpose,
77
- task=task,
78
- history=history,
79
- )
80
- lines = resp.strip().strip("\n").split("\n")
81
- for line in lines:
82
- if line == "":
83
- continue
84
- if line.startswith("thought: "):
85
- history += "{}\n".format(line)
86
- elif line.startswith("action: "):
87
- action_name, action_input = parse_action(line)
88
- history += "{}\n".format(line)
89
- return action_name, action_input, history, task
90
- else:
91
- assert False, "unknown action: {}".format(line)
92
- return "MAIN", None, history, task
93
-
94
- def call_test(purpose, task, history, directory, action_input):
95
- result = subprocess.run(
96
- ["python", "-m", "pytest", "--collect-only", directory],
97
- capture_output=True,
98
- text=True,
99
- )
100
- if result.returncode != 0:
101
- history += "observation: there are no tests! Test should be written in a test folder under {}\n".format(
102
- directory
103
- )
104
- return "MAIN", None, history, task
105
- result = subprocess.run(
106
- ["python", "-m", "pytest", directory], capture_output=True, text=True
107
- )
108
- if result.returncode == 0:
109
- history += "observation: tests pass\n"
110
- return "MAIN", None, history, task
111
- module_summary, content, _ = read_python_module_structure(directory)
112
- resp = run_gpt(
113
- UNDERSTAND_TEST_RESULTS_PROMPT,
114
- stop_tokens=[],
115
- max_tokens=256,
116
- module_summary=module_summary,
117
- purpose=purpose,
118
- task=task,
119
- history=history,
120
- stdout=result.stdout[:5000], # limit amount of text
121
- stderr=result.stderr[:5000], # limit amount of text
122
- )
123
- history += "observation: tests failed: {}\n".format(resp)
124
- return "MAIN", None, history, task
125
-
126
- def call_set_task(purpose, task, history, directory, action_input):
127
- module_summary, content, _ = read_python_module_structure(directory)
128
- task = run_gpt(
129
- TASK_PROMPT,
130
- stop_tokens=[],
131
- max_tokens=64,
132
- module_summary=module_summary,
133
- purpose=purpose,
134
- task=task,
135
- history=history,
136
- ).strip("\n")
137
- history += "observation: task has been updated to: {}\n".format(task)
138
- return "MAIN", None, history, task
139
-
140
- def call_read(purpose, task, history, directory, action_input):
141
- if not os.path.exists(action_input):
142
- history += "observation: file does not exist\n"
143
- return "MAIN", None, history, task
144
- module_summary, content, _ = read_python_module_structure(directory)
145
- f_content = (
146
- content[action_input] if content[action_input] else "< document is empty >"
147
- )
148
- resp = run_gpt(
149
- READ_PROMPT,
150
- stop_tokens=[],
151
- max_tokens=256,
152
- module_summary=module_summary,
153
- purpose=purpose,
154
- task=task,
155
- history=history,
156
- file_path=action_input,
157
- file_contents=f_content,
158
- ).strip("\n")
159
- history += "observation: {}\n".format(resp)
160
- return "MAIN", None, history, task
161
-
162
- def call_modify(purpose, task, history, directory, action_input):
163
- if not os.path.exists(action_input):
164
- history += "observation: file does not exist\n"
165
- return "MAIN", None, history, task
166
- (
167
- module_summary,
168
- content,
169
- _,
170
- ) = read_python_module_structure(directory)
171
- f_content = (
172
- content[action_input] if content[action_input] else "< document is empty >"
173
- )
174
- resp = run_gpt(
175
- MODIFY_PROMPT,
176
- stop_tokens=["action:", "thought:", "observation:"],
177
- max_tokens=2048,
178
- module_summary=module_summary,
179
- purpose=purpose,
180
- task=task,
181
- history=history,
182
- file_path=action_input,
183
- file_contents=f_content,
184
- )
185
- new_contents, description = parse_file_content(resp)
186
- if new_contents is None:
187
- history += "observation: failed to modify file\n"
188
- return "MAIN", None, history, task
189
-
190
- with open(action_input, "w") as f:
191
- f.write(new_contents)
192
-
193
- history += "observation: file successfully modified\n"
194
- history += "observation: {}\n".format(description)
195
- return "MAIN", None, history, task
196
-
197
- def call_add(purpose, task, history, directory, action_input):
198
- d = os.path.dirname(action_input)
199
- if not d.startswith(directory):
200
- history += "observation: files must be under directory {}\n".format(directory)
201
- elif not action_input.endswith(".py"):
202
- history += "observation: can only write .py files\n"
203
  else:
204
- if d and not os.path.exists(d):
205
- os.makedirs(d)
206
- if not os.path.exists(action_input):
207
- module_summary, _, _ = read_python_module_structure(directory)
208
- resp = run_gpt(
209
- ADD_PROMPT,
210
- stop_tokens=["action:", "thought:", "observation:"],
211
- max_tokens=2048,
212
- module_summary=module_summary,
213
- purpose=purpose,
214
- task=task,
215
- history=history,
216
- file_path=action_input,
217
- )
218
- new_contents, description = parse_file_content(resp)
219
- if new_contents is None:
220
- history += "observation: failed to write file\n"
221
- return "MAIN", None, history, task
222
-
223
- with open(action_input, "w") as f:
224
- f.write(new_contents)
225
-
226
- history += "observation: file successfully written\n"
227
- history += "observation: {}\n".format(description)
228
- else:
229
- history += "observation: file already exists\n"
230
- return "MAIN", None, history, task
231
-
232
- # Streamlit UI
233
- st.title("AI Powered Code Assistant")
234
-
235
- with st.sidebar:
236
- st.header("Task Configuration")
237
- purpose = st.text_input("Purpose")
238
- task = st.text_input("Task")
239
- directory = st.text_input("Directory")
240
- action_input = st.text_input("Action Input")
241
- action = st.selectbox("Action", ["main", "test", "set_task", "read", "modify", "add"])
242
-
243
- if st.button("Run Action"):
244
- history = ""
245
- if action == "main":
246
- action_name, action_input, history, task = call_main(purpose, task, history, directory, action_input)
247
- elif action == "test":
248
- action_name, action_input, history, task = call_test(purpose, task, history, directory, action_input)
249
- elif action == "set_task":
250
- action_name, action_input, history, task = call_set_task(purpose, task, history, directory, action_input)
251
- elif action == "read":
252
- action_name, action_input, history, task = call_read(purpose, task, history, directory, action_input)
253
- elif action == "modify":
254
- action_name, action_input, history, task = call_modify(purpose, task, history, directory, action_input)
255
- elif action == "add":
256
- action_name, action_input, history, task = call_add(purpose, task, history, directory, action_input)
257
-
258
- st.subheader("History")
259
- st.write(history)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import sys
 
 
 
3
  import subprocess
4
+ import base64
 
5
  import json
6
+ from io import StringIO
7
+ from typing import Dict, List
8
+
9
  import streamlit as st
10
+ from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
11
+ from pylint import lint
12
+
13
+ # Add your Hugging Face API token here
14
+ hf_token = st.secrets["huggingface"]
15
+
16
+ # Global state to manage communication between Tool Box and Workspace Chat App
17
+ if "chat_history" not in st.session_state:
18
+ st.session_state.chat_history = []
19
+ if "terminal_history" not in st.session_state:
20
+ st.session_state.terminal_history = []
21
+ if "workspace_projects" not in st.session_state:
22
+ st.session_state.workspace_projects = {}
23
+
24
+ # Load pre-trained RAG retriever
25
+ rag_retriever = pipeline("retrieval-question-answering", model="facebook/rag-token-base")
26
+
27
+ # Load pre-trained chat model
28
+ chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium")
29
+
30
+ # Load tokenizer
31
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
32
+
33
+ def process_input(user_input: str) -> str:
34
+ # Input pipeline: Tokenize and preprocess user input
35
+ input_ids = tokenizer(user_input, return_tensors="pt").input_ids
36
+ attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
37
+
38
+ # RAG model: Generate response
39
+ with torch.no_grad():
40
+ output = rag_retriever(input_ids, attention_mask=attention_mask)
41
+ response = output.generator_outputs[0].sequences[0]
42
+
43
+ # Chat model: Refine response
44
+ chat_input = tokenizer(response, return_tensors="pt")
45
+ chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
46
+ chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
47
+ with torch.no_grad():
48
+ chat_output = chat_model(**chat_input)
49
+ refined_response = chat_output.sequences[0]
50
+
51
+ # Output pipeline: Return final response
52
+ return refined_response
53
+
54
+ class AIAgent:
55
+ def __init__(self, name: str, description: str, skills: List[str], hf_api=None):
56
+ self.name = name
57
+ self.description = description
58
+ self.skills = skills
59
+ self._hf_api = hf_api
60
+ self._hf_token = hf_token
61
+
62
+ @property
63
+ def hf_api(self):
64
+ if not self._hf_api and self.has_valid_hf_token():
65
+ self._hf_api = HfApi(token=self._hf_token)
66
+ return self._hf_api
67
+
68
+ def has_valid_hf_token(self):
69
+ return bool(self._hf_token)
70
+
71
+ async def autonomous_build(self, chat_history: List[str], workspace_projects: Dict[str, str], project_name: str, selected_model: str):
72
+ # Continuation of previous methods
73
+ summary = "Chat History:\n" + "\n".join(chat_history)
74
+ summary += "\n\nWorkspace Projects:\n" + "\n".join(workspace_projects.items())
75
+
76
+ # Analyze chat history and workspace projects to suggest actions
77
+ # Example:
78
+ # - Check if the user has requested to create a new file
79
+ # - Check if the user has requested to install a package
80
+ # - Check if the user has requested to run a command
81
+ # - Check if the user has requested to generate code
82
+ # - Check if the user has requested to translate code
83
+ # - Check if the user has requested to summarize text
84
+ # - Check if the user has requested to analyze sentiment
85
+
86
+ # Generate a response based on the analysis
87
+ next_step = "Based on the current state, the next logical step is to implement the main application logic."
88
+
89
+ # Ensure project folder exists
90
+ project_path = os.path.join(PROJECT_ROOT, project_name)
91
+ if not os.path.exists(project_path):
92
+ os.makedirs(project_path)
93
+
94
+ # Create requirements.txt if it doesn't exist
95
+ requirements_file = os.path.join(project_path, "requirements.txt")
96
+ if not os.path.exists(requirements_file):
97
+ with open(requirements_file, "w") as f:
98
+ f.write("# Add your project's dependencies here\n")
99
+
100
+ # Create app.py if it doesn't exist
101
+ app_file = os.path.join(project_path, "app.py")
102
+ if not os.path.exists(app_file):
103
+ with open(app_file, "w") as f:
104
+ f.write("# Your project's main application logic goes here\n")
105
 
106
+ # Generate GUI code for app.py if requested
107
+ if "create a gui" in summary.lower():
108
+ gui_code = generate_code(
109
+ "Create a simple GUI for this application", selected_model)
110
+ with open(app_file, "a") as f:
111
+ f.write(gui_code)
112
+
113
+ # Run the default build process
114
+ build_command = "pip install -r requirements.txt && python app.py"
115
+ try:
116
+ result = subprocess.run(
117
+ build_command, shell=True, capture_output=True, text=True, cwd=project_path)
118
+ st.write(f"Build Output:\n{result.stdout}")
119
+ if result.stderr:
120
+ st.error(f"Build Errors:\n{result.stderr}")
121
+ except Exception as e:
122
+ st.error(f"Build Error: {e}")
123
+
124
+ return summary, next_step
125
+
126
+ def get_built_space_files() -> Dict[str, str]:
127
+ # Replace with your logic to gather the files you want to deploy
128
+ return {
129
+ "app.py": "# Your Streamlit app code here",
130
+ "requirements.txt": "streamlit\ntransformers"
131
+ # Add other files as needed
132
+ }
133
+
134
+ def save_agent_to_file(agent: AIAgent):
135
+ """Saves the agent's prompt to a file."""
136
+ if not os.path.exists(AGENT_DIRECTORY):
137
+ os.makedirs(AGENT_DIRECTORY)
138
+ file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
139
+ with open(file_path, "w") as file:
140
+ file.write(agent.create_agent_prompt())
141
+ st.session_state.available_agents.append(agent.name)
142
+
143
+ def load_agent_prompt(agent_name: str) -> str:
144
+ """Loads an agent prompt from a file."""
145
+ file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
146
+ if os.path.exists(file_path):
147
+ with open(file_path, "r") as file:
148
+ agent_prompt = file.read()
149
+ return agent_prompt
150
+ else:
151
+ return None
152
+
153
+ def create_agent_from_text(name: str, text: str) -> str:
154
+ skills = text.split("\n")
155
+ agent = AIAgent(name, "AI agent created from text input.", skills)
156
+ save_agent_to_file(agent)
157
+ return agent.create_agent_prompt()
158
+
159
+ def chat_interface_with_agent(input_text: str, agent_name: str) -> str:
160
+ agent_prompt = load_agent_prompt(agent_name)
161
+ if agent_prompt is None:
162
+ return f"Agent {agent_name} not found."
163
+
164
+ model_name = "MaziyarPanahi/Codestral-22B-v0.1-GGUF"
165
+ try:
166
+ generator = pipeline("text-generation", model=model_name)
167
+ generator.tokenizer.pad_token = generator.tokenizer.eos_token
168
+ generated_response = generator(
169
+ f"{agent_prompt}\n\nUser: {input_text}\nAgent:", max_length=100, do_sample=True, top_k=50)[0]["generated_text"]
170
+ return generated_response
171
+ except Exception as e:
172
+ return f"Error loading model: {e}"
173
+
174
+ def terminal_interface(command: str, project_name: str = None) -> str:
175
+ if project_name:
176
+ project_path = os.path.join(PROJECT_ROOT, project_name)
177
+ if not os.path.exists(project_path):
178
+ return f"Project {project_name} does not exist."
179
+ result = subprocess.run(
180
+ command, shell=True, capture_output=True, text=True, cwd=project_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
  else:
182
+ result = subprocess.run(command, shell=True, capture_output=True, text=True)
183
+ return result.stdout
184
+
185
+ def code_editor_interface(code: str) -> str:
186
+ try:
187
+ formatted_code = black.format_str(code, mode=black.FileMode())
188
+ except black.NothingChanged:
189
+ formatted_code = code
190
+
191
+ result = StringIO()
192
+ sys.stdout = result
193
+ sys.stderr = result
194
+
195
+ (pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
196
+ sys.stdout = sys.__stdout__
197
+ sys.stderr = sys.__stderr__
198
+
199
+ lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
200
+
201
+ return formatted_code, lint_message
202
+
203
+ def summarize_text(text: str) -> str:
204
+ summarizer = pipeline("summarization")
205
+ summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
206
+ return summary[0]['summary_text']
207
+
208
+ def sentiment_analysis(text: str) -> str:
209
+ analyzer = pipeline("sentiment-analysis")
210
+ result = analyzer(text)
211
+ return result[0]['label']
212
+
213
+ def translate_code(code: str, source_language: str, target_language: str) -> str:
214
+ # Use a Hugging Face translation model instead of OpenAI
215
+ # Example: English to Spanish
216
+ translator = pipeline(
217
+ "translation", model="bartowski/Codestral-22B-v0.1-GGUF")
218
+ translated_code = translator(code, target_lang=target_language)[0]['translation_text']
219
+ return translated_code
220
+
221
+ def generate_code(code_idea: str, model_name: str) -> str:
222
+ """Generates code using the selected model."""
223
+ try:
224
+ generator = pipeline('text-generation', model=model_name)
225
+ generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text']
226
+ return generated_code
227
+ except Exception as e:
228
+ return f"Error generating code: {e}"
229
+
230
+ def chat_interface(input_text: str) -> str:
231
+ """Handles general chat interactions with the user."""
232
+ # Use a Hugging Face chatbot model or your own logic
233
+ chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
234
+ response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
235
+ return response
236
+
237
+ def workspace_interface(project_name: str) -> str:
238
+ project_path = os.path.join(PROJECT_ROOT, project_name)
239
+ if not os.path.exists(project_path):
240
+ os.makedirs(project_path)
241
+ st.session_state.workspace_projects[project_name] = {'files': []}
242
+ return f"Project '{project_name}' created successfully."
243
+ else:
244
+ return f"Project '{project_name}' already exists."
245
+
246
+ def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
247
+ project_path = os.path.join(PROJECT_ROOT, project_name)
248
+ if not os.path.exists(project_path):
249
+ return f"Project '{project_name}' does not exist."
250
+
251
+ file_path = os.path.join(project_path, file_name)
252
+ with open(file_path, "w") as file:
253
+ file.write(code)
254
+ st.session_state.workspace_projects[project_name]['files'].append(file_name)
255
+ return f"Code added to '{file_name}' in project '{project_name}'."
256
+
257
+ def create_space_on_hugging_face(api, name, description, public, files, entrypoint="launch.py"):
258
+ url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
259
+ headers = {"Authorization": f"Bearer {api.access_token}"}
260
+ payload = {
261
+ "public": public,
262
+ "gitignore_template": "web",
263
+ "default_branch": "main",
264
+ "archived": False,
265
+ "files": []
266
+ }
267
+ for filename, contents in files.items():
268
+ data = {
269
+ "content": contents,
270
+ "path": filename,
271
+ "encoding": "utf-8",
272
+ "mode": "overwrite"
273
+ }
274
+ payload["files"].append(data)
275
+ response = requests.post(url, json=payload, headers=headers)
276
+ response.raise_for_status()
277
+ location = response.headers.get("Location")
278
+ # wait_for_processing(location, api) # You might need to implement this if it's not already defined
279
+
280
+ return Repository(name=name, api=api)
281
+
282
+ # Streamlit App
283
+ st.title("AI Agent Creator")
284
+
285
+ # Sidebar navigation
286
+ st.sidebar.title("Navigation")
287
+ app_mode = st.sidebar.selectbox(
288
+ "Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
289
+
290
+ if app_mode == "AI Agent Creator":
291
+ # AI Agent Creator
292
+ st.header("Create an AI Agent from Text")
293
+
294
+ st.subheader("From Text")
295
+ agent_name = st.text_input("Enter agent name:")
296
+ text_input = st.text_area("Enter skills (one per line):")
297
+ if st.button("Create Agent"):
298
+ agent_prompt = create_agent_from_text(agent_name, text_input)
299
+ st.success(f"Agent '{agent_name}' created and saved successfully.")
300
+ st.session_state.available_agents.append(agent_name)
301
+
302
+ elif app_mode == "Tool Box":
303
+ # Tool Box
304
+ st.header("AI-Powered Tools")
305
+
306
+ # Chat Interface
307
+ st.subheader("Chat with CodeCraft")
308
+ chat_input = st.text_area("Enter your message:")
309
+ if st.button("Send"):
310
+ chat_response = chat_interface(chat_input)
311
+ st.session_state.chat_history.append((chat_input, chat_response))
312
+ st.write(f"CodeCraft: {chat_response}")
313
+
314
+ # Terminal Interface
315
+ st.subheader("Terminal")
316
+ terminal_input = st.text_input("Enter a command:")
317
+ if st.button("Run"):
318
+ terminal_output = terminal_interface(terminal_input)
319
+ st.session_state.terminal_history.append(
320
+ (terminal_input, terminal_output))
321
+ st.code(terminal_output, language="bash")
322
+
323
+ # Code Editor Interface
324
+ st.subheader("Code Editor")
325
+ code_editor = st.text_area("Write your code:", height=300)
326
+ if st.button("Format & Lint"):
327
+ formatted_code, lint_message = code_editor_interface(code_editor)
328
+ st.code(formatted_code, language="python")
329
+ st.info(lint_message)
330
+
331
+ # Text Summarization Tool
332
+ st.subheader("Summarize Text")
333
+ text_to_summarize = st.text_area("Enter text to summarize:")
334
+ if st.button("Summarize"):
335
+ summary = summarize_text(text_to_summarize)
336
+ st.write(f"Summary: {summary}")
337
+
338
+ # Sentiment Analysis Tool
339
+ st.subheader("Sentiment Analysis")
340
+ sentiment_text = st.text_area("Enter text for sentiment analysis:")
341
+ if st.button("Analyze Sentiment"):
342
+ sentiment = sentiment_analysis(sentiment_text)
343
+ st.write(f"Sentiment: {sentiment}")
344
+
345
+ # Text Translation Tool (Code Translation)
346
+ st.subheader("Translate Code")
347
+ code_to_translate = st.text_area("Enter code to translate:")
348
+ source_language = st.text_input("Enter source language (e.g., 'Python'):")
349
+ target_language = st.text_input(
350
+ "Enter target language (e.g., 'JavaScript'):")
351
+ if st.button("Translate Code"):
352
+ translated_code = translate_code(
353
+ code_to_translate, source_language, target_language)
354
+ st.code(translated_code, language=target_language.lower())
355
+
356
+ # Code Generation
357
+ st.subheader("Code Generation")
358
+ code_idea = st.text_input("Enter your code idea:")
359
+ if st.button("Generate Code"):
360
+ generated_code = generate_code(code_idea)
361
+ st.code(generated_code, language="python")
362
+
363
+ elif app_mode == "Workspace Chat App":
364
+ # Workspace Chat App
365
+ st.header("Workspace Chat App")
366
+
367
+ # Project Workspace Creation
368
+ st.subheader("Create a New Project")
369
+ project_name = st.text_input("Enter project name:")
370
+ if st.button("Create Project"):
371
+ workspace_status = workspace_interface(project_name)
372
+ st.success(workspace_status)
373
+
374
+ # Automatically create requirements.txt and app.py
375
+ project_path = os.path.join(PROJECT_ROOT, project_name)
376
+ requirements_file = os.path.join(project_path, "requirements.txt")
377
+ if not os.path.exists(requirements_file):
378
+ with open(requirements_file, "w") as f:
379
+ f.write("# Add your project's dependencies here\n")
380
+
381
+ app_file = os.path.join(project_path, "app.py")
382
+ if not os.path.exists(app_file):
383
+ with open(app_file, "w") as f:
384
+ f.write("# Your project's main application logic goes here\n")
385
+
386
+ # Add Code to Workspace
387
+ st.subheader("Add Code to Workspace")
388
+ code_to_add = st.text_area("Enter code to add to workspace:")
389
+ file_name = st.text_input("Enter file name (e.g., 'app.py'):")
390
+ if st.button("Add Code"):
391
+ add_code_status = add_code_to_workspace(
392
+ project_name, code_to_add, file_name)
393
+ st.session_state.terminal_history.append(
394
+ (f"Add Code: {code_to_add}", add_code_status))
395
+ st.success(add_code_status)
396
+
397
+ # Terminal Interface with Project Context
398
+ st.subheader("Terminal (Workspace Context)")
399
+ terminal_input = st.text_input("Enter a command within the workspace:")
400
+ if st.button("Run Command"):
401
+ terminal_output = terminal_interface(terminal_input, project_name)
402
+ st.session_state.terminal_history.append(
403
+ (terminal_input, terminal_output))
404
+ st.code(terminal_output, language="bash")
405
+
406
+ # Chat Interface for Guidance
407
+ st.subheader("Chat with CodeCraft for Guidance")
408
+ chat_input = st.text_area("Enter your message for guidance:")
409
+ if st.button("Get Guidance"):
410
+ chat_response = chat_interface(chat_input)
411
+ st.session_state.chat_history.append((chat_input, chat_response))
412
+ st.write(f"CodeCraft: {chat_response}")
413
+
414
+ # Display Chat History
415
+ st.subheader("Chat History")
416
+ for user_input, response in st.session_state.chat_history:
417
+ st.write(f"User: {user_input}")
418
+ st.write(f"CodeCraft: {response}")
419
+
420
+ # Display Terminal History
421
+ st.subheader("Terminal History")
422
+ for command, output in st.session_state.terminal_history:
423
+ st.write(f"Command: {command}")
424
+ st.code(output, language="bash")
425
+
426
+ # Display Projects and Files
427
+ st.subheader("Workspace Projects")
428
+ for project, details in st.session_state.workspace_projects.items():
429
+ st.write(f"Project: {project}")
430
+ for file in details['files']:
431
+ st.write(f" - {file}")
432
+
433
+ # Chat with AI Agents
434
+ st.subheader("Chat with AI Agents")
435
+ selected_agent = st.selectbox(
436
+ "Select an AI agent", st.session_state.available_agents)
437
+ agent_chat_input = st.text_area("Enter your message for the agent:")
438
+ if st.button("Send to Agent"):
439
+ agent_chat_response = chat_interface_with_agent(
440
+ agent_chat_input, selected_agent)
441
+ st.session_state.chat_history.append(
442
+ (agent_chat_input, agent_chat_response))
443
+ st.write(f"{selected_agent}: {agent_chat_response}")
444
+
445
+ # Code Generation
446
+ st.subheader("Code Generation")
447
+ code_idea = st.text_input("Enter your code idea:")
448
+
449
+ # Model Selection Menu
450
+ selected_model = st.selectbox(
451
+ "Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
452
+
453
+ if st.button("Generate Code"):
454
+ generated_code = generate_code(code_idea, selected_model)
455
+ st.code(generated_code, language="python")
456
+
457
+ # Automate Build Process
458
+ st.subheader("Automate Build Process")
459
+ if st.button("Automate"):
460
+ # Load the agent without skills for now
461
+ agent = AIAgent(selected_agent, "", [])
462
+ summary, next_step = agent.autonomous_build(
463
+ st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model)
464
+ st.write("Autonomous Build Summary:")
465
+ st.write(summary)
466
+ st.write("Next Step:")
467
+ st.write(next_step)
468
+
469
+ # If everything went well, proceed to deploy the Space
470
+ if agent._hf_api and agent.has_valid_hf_token():
471
+ agent.deploy_built_space_to_hf()
472
+ # Use the hf_token to interact with the Hugging Face API
473
+ api = HfApi(token="hf_token") # Function to create a Space on Hugging Face
474
+ create_space_on_hugging_face(api, agent.name, agent.description, True, get_built_space_files())