Spaces:
Running
Running
acecalisto3
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,259 +1,474 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
import random
|
5 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
6 |
import subprocess
|
7 |
-
import
|
8 |
-
import time
|
9 |
import json
|
|
|
|
|
|
|
10 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
if
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
action_name, action_input = parse_action(line)
|
88 |
-
history += "{}\n".format(line)
|
89 |
-
return action_name, action_input, history, task
|
90 |
-
else:
|
91 |
-
assert False, "unknown action: {}".format(line)
|
92 |
-
return "MAIN", None, history, task
|
93 |
-
|
94 |
-
def call_test(purpose, task, history, directory, action_input):
|
95 |
-
result = subprocess.run(
|
96 |
-
["python", "-m", "pytest", "--collect-only", directory],
|
97 |
-
capture_output=True,
|
98 |
-
text=True,
|
99 |
-
)
|
100 |
-
if result.returncode != 0:
|
101 |
-
history += "observation: there are no tests! Test should be written in a test folder under {}\n".format(
|
102 |
-
directory
|
103 |
-
)
|
104 |
-
return "MAIN", None, history, task
|
105 |
-
result = subprocess.run(
|
106 |
-
["python", "-m", "pytest", directory], capture_output=True, text=True
|
107 |
-
)
|
108 |
-
if result.returncode == 0:
|
109 |
-
history += "observation: tests pass\n"
|
110 |
-
return "MAIN", None, history, task
|
111 |
-
module_summary, content, _ = read_python_module_structure(directory)
|
112 |
-
resp = run_gpt(
|
113 |
-
UNDERSTAND_TEST_RESULTS_PROMPT,
|
114 |
-
stop_tokens=[],
|
115 |
-
max_tokens=256,
|
116 |
-
module_summary=module_summary,
|
117 |
-
purpose=purpose,
|
118 |
-
task=task,
|
119 |
-
history=history,
|
120 |
-
stdout=result.stdout[:5000], # limit amount of text
|
121 |
-
stderr=result.stderr[:5000], # limit amount of text
|
122 |
-
)
|
123 |
-
history += "observation: tests failed: {}\n".format(resp)
|
124 |
-
return "MAIN", None, history, task
|
125 |
-
|
126 |
-
def call_set_task(purpose, task, history, directory, action_input):
|
127 |
-
module_summary, content, _ = read_python_module_structure(directory)
|
128 |
-
task = run_gpt(
|
129 |
-
TASK_PROMPT,
|
130 |
-
stop_tokens=[],
|
131 |
-
max_tokens=64,
|
132 |
-
module_summary=module_summary,
|
133 |
-
purpose=purpose,
|
134 |
-
task=task,
|
135 |
-
history=history,
|
136 |
-
).strip("\n")
|
137 |
-
history += "observation: task has been updated to: {}\n".format(task)
|
138 |
-
return "MAIN", None, history, task
|
139 |
-
|
140 |
-
def call_read(purpose, task, history, directory, action_input):
|
141 |
-
if not os.path.exists(action_input):
|
142 |
-
history += "observation: file does not exist\n"
|
143 |
-
return "MAIN", None, history, task
|
144 |
-
module_summary, content, _ = read_python_module_structure(directory)
|
145 |
-
f_content = (
|
146 |
-
content[action_input] if content[action_input] else "< document is empty >"
|
147 |
-
)
|
148 |
-
resp = run_gpt(
|
149 |
-
READ_PROMPT,
|
150 |
-
stop_tokens=[],
|
151 |
-
max_tokens=256,
|
152 |
-
module_summary=module_summary,
|
153 |
-
purpose=purpose,
|
154 |
-
task=task,
|
155 |
-
history=history,
|
156 |
-
file_path=action_input,
|
157 |
-
file_contents=f_content,
|
158 |
-
).strip("\n")
|
159 |
-
history += "observation: {}\n".format(resp)
|
160 |
-
return "MAIN", None, history, task
|
161 |
-
|
162 |
-
def call_modify(purpose, task, history, directory, action_input):
|
163 |
-
if not os.path.exists(action_input):
|
164 |
-
history += "observation: file does not exist\n"
|
165 |
-
return "MAIN", None, history, task
|
166 |
-
(
|
167 |
-
module_summary,
|
168 |
-
content,
|
169 |
-
_,
|
170 |
-
) = read_python_module_structure(directory)
|
171 |
-
f_content = (
|
172 |
-
content[action_input] if content[action_input] else "< document is empty >"
|
173 |
-
)
|
174 |
-
resp = run_gpt(
|
175 |
-
MODIFY_PROMPT,
|
176 |
-
stop_tokens=["action:", "thought:", "observation:"],
|
177 |
-
max_tokens=2048,
|
178 |
-
module_summary=module_summary,
|
179 |
-
purpose=purpose,
|
180 |
-
task=task,
|
181 |
-
history=history,
|
182 |
-
file_path=action_input,
|
183 |
-
file_contents=f_content,
|
184 |
-
)
|
185 |
-
new_contents, description = parse_file_content(resp)
|
186 |
-
if new_contents is None:
|
187 |
-
history += "observation: failed to modify file\n"
|
188 |
-
return "MAIN", None, history, task
|
189 |
-
|
190 |
-
with open(action_input, "w") as f:
|
191 |
-
f.write(new_contents)
|
192 |
-
|
193 |
-
history += "observation: file successfully modified\n"
|
194 |
-
history += "observation: {}\n".format(description)
|
195 |
-
return "MAIN", None, history, task
|
196 |
-
|
197 |
-
def call_add(purpose, task, history, directory, action_input):
|
198 |
-
d = os.path.dirname(action_input)
|
199 |
-
if not d.startswith(directory):
|
200 |
-
history += "observation: files must be under directory {}\n".format(directory)
|
201 |
-
elif not action_input.endswith(".py"):
|
202 |
-
history += "observation: can only write .py files\n"
|
203 |
else:
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import sys
|
|
|
|
|
|
|
3 |
import subprocess
|
4 |
+
import base64
|
|
|
5 |
import json
|
6 |
+
from io import StringIO
|
7 |
+
from typing import Dict, List
|
8 |
+
|
9 |
import streamlit as st
|
10 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
11 |
+
from pylint import lint
|
12 |
+
|
13 |
+
# Add your Hugging Face API token here
|
14 |
+
hf_token = st.secrets["huggingface"]
|
15 |
+
|
16 |
+
# Global state to manage communication between Tool Box and Workspace Chat App
|
17 |
+
if "chat_history" not in st.session_state:
|
18 |
+
st.session_state.chat_history = []
|
19 |
+
if "terminal_history" not in st.session_state:
|
20 |
+
st.session_state.terminal_history = []
|
21 |
+
if "workspace_projects" not in st.session_state:
|
22 |
+
st.session_state.workspace_projects = {}
|
23 |
+
|
24 |
+
# Load pre-trained RAG retriever
|
25 |
+
rag_retriever = pipeline("retrieval-question-answering", model="facebook/rag-token-base")
|
26 |
+
|
27 |
+
# Load pre-trained chat model
|
28 |
+
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium")
|
29 |
+
|
30 |
+
# Load tokenizer
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
32 |
+
|
33 |
+
def process_input(user_input: str) -> str:
|
34 |
+
# Input pipeline: Tokenize and preprocess user input
|
35 |
+
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
|
36 |
+
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
|
37 |
+
|
38 |
+
# RAG model: Generate response
|
39 |
+
with torch.no_grad():
|
40 |
+
output = rag_retriever(input_ids, attention_mask=attention_mask)
|
41 |
+
response = output.generator_outputs[0].sequences[0]
|
42 |
+
|
43 |
+
# Chat model: Refine response
|
44 |
+
chat_input = tokenizer(response, return_tensors="pt")
|
45 |
+
chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
|
46 |
+
chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
|
47 |
+
with torch.no_grad():
|
48 |
+
chat_output = chat_model(**chat_input)
|
49 |
+
refined_response = chat_output.sequences[0]
|
50 |
+
|
51 |
+
# Output pipeline: Return final response
|
52 |
+
return refined_response
|
53 |
+
|
54 |
+
class AIAgent:
|
55 |
+
def __init__(self, name: str, description: str, skills: List[str], hf_api=None):
|
56 |
+
self.name = name
|
57 |
+
self.description = description
|
58 |
+
self.skills = skills
|
59 |
+
self._hf_api = hf_api
|
60 |
+
self._hf_token = hf_token
|
61 |
+
|
62 |
+
@property
|
63 |
+
def hf_api(self):
|
64 |
+
if not self._hf_api and self.has_valid_hf_token():
|
65 |
+
self._hf_api = HfApi(token=self._hf_token)
|
66 |
+
return self._hf_api
|
67 |
+
|
68 |
+
def has_valid_hf_token(self):
|
69 |
+
return bool(self._hf_token)
|
70 |
+
|
71 |
+
async def autonomous_build(self, chat_history: List[str], workspace_projects: Dict[str, str], project_name: str, selected_model: str):
|
72 |
+
# Continuation of previous methods
|
73 |
+
summary = "Chat History:\n" + "\n".join(chat_history)
|
74 |
+
summary += "\n\nWorkspace Projects:\n" + "\n".join(workspace_projects.items())
|
75 |
+
|
76 |
+
# Analyze chat history and workspace projects to suggest actions
|
77 |
+
# Example:
|
78 |
+
# - Check if the user has requested to create a new file
|
79 |
+
# - Check if the user has requested to install a package
|
80 |
+
# - Check if the user has requested to run a command
|
81 |
+
# - Check if the user has requested to generate code
|
82 |
+
# - Check if the user has requested to translate code
|
83 |
+
# - Check if the user has requested to summarize text
|
84 |
+
# - Check if the user has requested to analyze sentiment
|
85 |
+
|
86 |
+
# Generate a response based on the analysis
|
87 |
+
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
88 |
+
|
89 |
+
# Ensure project folder exists
|
90 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
91 |
+
if not os.path.exists(project_path):
|
92 |
+
os.makedirs(project_path)
|
93 |
+
|
94 |
+
# Create requirements.txt if it doesn't exist
|
95 |
+
requirements_file = os.path.join(project_path, "requirements.txt")
|
96 |
+
if not os.path.exists(requirements_file):
|
97 |
+
with open(requirements_file, "w") as f:
|
98 |
+
f.write("# Add your project's dependencies here\n")
|
99 |
+
|
100 |
+
# Create app.py if it doesn't exist
|
101 |
+
app_file = os.path.join(project_path, "app.py")
|
102 |
+
if not os.path.exists(app_file):
|
103 |
+
with open(app_file, "w") as f:
|
104 |
+
f.write("# Your project's main application logic goes here\n")
|
105 |
|
106 |
+
# Generate GUI code for app.py if requested
|
107 |
+
if "create a gui" in summary.lower():
|
108 |
+
gui_code = generate_code(
|
109 |
+
"Create a simple GUI for this application", selected_model)
|
110 |
+
with open(app_file, "a") as f:
|
111 |
+
f.write(gui_code)
|
112 |
+
|
113 |
+
# Run the default build process
|
114 |
+
build_command = "pip install -r requirements.txt && python app.py"
|
115 |
+
try:
|
116 |
+
result = subprocess.run(
|
117 |
+
build_command, shell=True, capture_output=True, text=True, cwd=project_path)
|
118 |
+
st.write(f"Build Output:\n{result.stdout}")
|
119 |
+
if result.stderr:
|
120 |
+
st.error(f"Build Errors:\n{result.stderr}")
|
121 |
+
except Exception as e:
|
122 |
+
st.error(f"Build Error: {e}")
|
123 |
+
|
124 |
+
return summary, next_step
|
125 |
+
|
126 |
+
def get_built_space_files() -> Dict[str, str]:
|
127 |
+
# Replace with your logic to gather the files you want to deploy
|
128 |
+
return {
|
129 |
+
"app.py": "# Your Streamlit app code here",
|
130 |
+
"requirements.txt": "streamlit\ntransformers"
|
131 |
+
# Add other files as needed
|
132 |
+
}
|
133 |
+
|
134 |
+
def save_agent_to_file(agent: AIAgent):
|
135 |
+
"""Saves the agent's prompt to a file."""
|
136 |
+
if not os.path.exists(AGENT_DIRECTORY):
|
137 |
+
os.makedirs(AGENT_DIRECTORY)
|
138 |
+
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
139 |
+
with open(file_path, "w") as file:
|
140 |
+
file.write(agent.create_agent_prompt())
|
141 |
+
st.session_state.available_agents.append(agent.name)
|
142 |
+
|
143 |
+
def load_agent_prompt(agent_name: str) -> str:
|
144 |
+
"""Loads an agent prompt from a file."""
|
145 |
+
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
146 |
+
if os.path.exists(file_path):
|
147 |
+
with open(file_path, "r") as file:
|
148 |
+
agent_prompt = file.read()
|
149 |
+
return agent_prompt
|
150 |
+
else:
|
151 |
+
return None
|
152 |
+
|
153 |
+
def create_agent_from_text(name: str, text: str) -> str:
|
154 |
+
skills = text.split("\n")
|
155 |
+
agent = AIAgent(name, "AI agent created from text input.", skills)
|
156 |
+
save_agent_to_file(agent)
|
157 |
+
return agent.create_agent_prompt()
|
158 |
+
|
159 |
+
def chat_interface_with_agent(input_text: str, agent_name: str) -> str:
|
160 |
+
agent_prompt = load_agent_prompt(agent_name)
|
161 |
+
if agent_prompt is None:
|
162 |
+
return f"Agent {agent_name} not found."
|
163 |
+
|
164 |
+
model_name = "MaziyarPanahi/Codestral-22B-v0.1-GGUF"
|
165 |
+
try:
|
166 |
+
generator = pipeline("text-generation", model=model_name)
|
167 |
+
generator.tokenizer.pad_token = generator.tokenizer.eos_token
|
168 |
+
generated_response = generator(
|
169 |
+
f"{agent_prompt}\n\nUser: {input_text}\nAgent:", max_length=100, do_sample=True, top_k=50)[0]["generated_text"]
|
170 |
+
return generated_response
|
171 |
+
except Exception as e:
|
172 |
+
return f"Error loading model: {e}"
|
173 |
+
|
174 |
+
def terminal_interface(command: str, project_name: str = None) -> str:
|
175 |
+
if project_name:
|
176 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
177 |
+
if not os.path.exists(project_path):
|
178 |
+
return f"Project {project_name} does not exist."
|
179 |
+
result = subprocess.run(
|
180 |
+
command, shell=True, capture_output=True, text=True, cwd=project_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
else:
|
182 |
+
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
183 |
+
return result.stdout
|
184 |
+
|
185 |
+
def code_editor_interface(code: str) -> str:
|
186 |
+
try:
|
187 |
+
formatted_code = black.format_str(code, mode=black.FileMode())
|
188 |
+
except black.NothingChanged:
|
189 |
+
formatted_code = code
|
190 |
+
|
191 |
+
result = StringIO()
|
192 |
+
sys.stdout = result
|
193 |
+
sys.stderr = result
|
194 |
+
|
195 |
+
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
|
196 |
+
sys.stdout = sys.__stdout__
|
197 |
+
sys.stderr = sys.__stderr__
|
198 |
+
|
199 |
+
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
|
200 |
+
|
201 |
+
return formatted_code, lint_message
|
202 |
+
|
203 |
+
def summarize_text(text: str) -> str:
|
204 |
+
summarizer = pipeline("summarization")
|
205 |
+
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
206 |
+
return summary[0]['summary_text']
|
207 |
+
|
208 |
+
def sentiment_analysis(text: str) -> str:
|
209 |
+
analyzer = pipeline("sentiment-analysis")
|
210 |
+
result = analyzer(text)
|
211 |
+
return result[0]['label']
|
212 |
+
|
213 |
+
def translate_code(code: str, source_language: str, target_language: str) -> str:
|
214 |
+
# Use a Hugging Face translation model instead of OpenAI
|
215 |
+
# Example: English to Spanish
|
216 |
+
translator = pipeline(
|
217 |
+
"translation", model="bartowski/Codestral-22B-v0.1-GGUF")
|
218 |
+
translated_code = translator(code, target_lang=target_language)[0]['translation_text']
|
219 |
+
return translated_code
|
220 |
+
|
221 |
+
def generate_code(code_idea: str, model_name: str) -> str:
|
222 |
+
"""Generates code using the selected model."""
|
223 |
+
try:
|
224 |
+
generator = pipeline('text-generation', model=model_name)
|
225 |
+
generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text']
|
226 |
+
return generated_code
|
227 |
+
except Exception as e:
|
228 |
+
return f"Error generating code: {e}"
|
229 |
+
|
230 |
+
def chat_interface(input_text: str) -> str:
|
231 |
+
"""Handles general chat interactions with the user."""
|
232 |
+
# Use a Hugging Face chatbot model or your own logic
|
233 |
+
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
|
234 |
+
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
|
235 |
+
return response
|
236 |
+
|
237 |
+
def workspace_interface(project_name: str) -> str:
|
238 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
239 |
+
if not os.path.exists(project_path):
|
240 |
+
os.makedirs(project_path)
|
241 |
+
st.session_state.workspace_projects[project_name] = {'files': []}
|
242 |
+
return f"Project '{project_name}' created successfully."
|
243 |
+
else:
|
244 |
+
return f"Project '{project_name}' already exists."
|
245 |
+
|
246 |
+
def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
|
247 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
248 |
+
if not os.path.exists(project_path):
|
249 |
+
return f"Project '{project_name}' does not exist."
|
250 |
+
|
251 |
+
file_path = os.path.join(project_path, file_name)
|
252 |
+
with open(file_path, "w") as file:
|
253 |
+
file.write(code)
|
254 |
+
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
255 |
+
return f"Code added to '{file_name}' in project '{project_name}'."
|
256 |
+
|
257 |
+
def create_space_on_hugging_face(api, name, description, public, files, entrypoint="launch.py"):
|
258 |
+
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
|
259 |
+
headers = {"Authorization": f"Bearer {api.access_token}"}
|
260 |
+
payload = {
|
261 |
+
"public": public,
|
262 |
+
"gitignore_template": "web",
|
263 |
+
"default_branch": "main",
|
264 |
+
"archived": False,
|
265 |
+
"files": []
|
266 |
+
}
|
267 |
+
for filename, contents in files.items():
|
268 |
+
data = {
|
269 |
+
"content": contents,
|
270 |
+
"path": filename,
|
271 |
+
"encoding": "utf-8",
|
272 |
+
"mode": "overwrite"
|
273 |
+
}
|
274 |
+
payload["files"].append(data)
|
275 |
+
response = requests.post(url, json=payload, headers=headers)
|
276 |
+
response.raise_for_status()
|
277 |
+
location = response.headers.get("Location")
|
278 |
+
# wait_for_processing(location, api) # You might need to implement this if it's not already defined
|
279 |
+
|
280 |
+
return Repository(name=name, api=api)
|
281 |
+
|
282 |
+
# Streamlit App
|
283 |
+
st.title("AI Agent Creator")
|
284 |
+
|
285 |
+
# Sidebar navigation
|
286 |
+
st.sidebar.title("Navigation")
|
287 |
+
app_mode = st.sidebar.selectbox(
|
288 |
+
"Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
289 |
+
|
290 |
+
if app_mode == "AI Agent Creator":
|
291 |
+
# AI Agent Creator
|
292 |
+
st.header("Create an AI Agent from Text")
|
293 |
+
|
294 |
+
st.subheader("From Text")
|
295 |
+
agent_name = st.text_input("Enter agent name:")
|
296 |
+
text_input = st.text_area("Enter skills (one per line):")
|
297 |
+
if st.button("Create Agent"):
|
298 |
+
agent_prompt = create_agent_from_text(agent_name, text_input)
|
299 |
+
st.success(f"Agent '{agent_name}' created and saved successfully.")
|
300 |
+
st.session_state.available_agents.append(agent_name)
|
301 |
+
|
302 |
+
elif app_mode == "Tool Box":
|
303 |
+
# Tool Box
|
304 |
+
st.header("AI-Powered Tools")
|
305 |
+
|
306 |
+
# Chat Interface
|
307 |
+
st.subheader("Chat with CodeCraft")
|
308 |
+
chat_input = st.text_area("Enter your message:")
|
309 |
+
if st.button("Send"):
|
310 |
+
chat_response = chat_interface(chat_input)
|
311 |
+
st.session_state.chat_history.append((chat_input, chat_response))
|
312 |
+
st.write(f"CodeCraft: {chat_response}")
|
313 |
+
|
314 |
+
# Terminal Interface
|
315 |
+
st.subheader("Terminal")
|
316 |
+
terminal_input = st.text_input("Enter a command:")
|
317 |
+
if st.button("Run"):
|
318 |
+
terminal_output = terminal_interface(terminal_input)
|
319 |
+
st.session_state.terminal_history.append(
|
320 |
+
(terminal_input, terminal_output))
|
321 |
+
st.code(terminal_output, language="bash")
|
322 |
+
|
323 |
+
# Code Editor Interface
|
324 |
+
st.subheader("Code Editor")
|
325 |
+
code_editor = st.text_area("Write your code:", height=300)
|
326 |
+
if st.button("Format & Lint"):
|
327 |
+
formatted_code, lint_message = code_editor_interface(code_editor)
|
328 |
+
st.code(formatted_code, language="python")
|
329 |
+
st.info(lint_message)
|
330 |
+
|
331 |
+
# Text Summarization Tool
|
332 |
+
st.subheader("Summarize Text")
|
333 |
+
text_to_summarize = st.text_area("Enter text to summarize:")
|
334 |
+
if st.button("Summarize"):
|
335 |
+
summary = summarize_text(text_to_summarize)
|
336 |
+
st.write(f"Summary: {summary}")
|
337 |
+
|
338 |
+
# Sentiment Analysis Tool
|
339 |
+
st.subheader("Sentiment Analysis")
|
340 |
+
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
341 |
+
if st.button("Analyze Sentiment"):
|
342 |
+
sentiment = sentiment_analysis(sentiment_text)
|
343 |
+
st.write(f"Sentiment: {sentiment}")
|
344 |
+
|
345 |
+
# Text Translation Tool (Code Translation)
|
346 |
+
st.subheader("Translate Code")
|
347 |
+
code_to_translate = st.text_area("Enter code to translate:")
|
348 |
+
source_language = st.text_input("Enter source language (e.g., 'Python'):")
|
349 |
+
target_language = st.text_input(
|
350 |
+
"Enter target language (e.g., 'JavaScript'):")
|
351 |
+
if st.button("Translate Code"):
|
352 |
+
translated_code = translate_code(
|
353 |
+
code_to_translate, source_language, target_language)
|
354 |
+
st.code(translated_code, language=target_language.lower())
|
355 |
+
|
356 |
+
# Code Generation
|
357 |
+
st.subheader("Code Generation")
|
358 |
+
code_idea = st.text_input("Enter your code idea:")
|
359 |
+
if st.button("Generate Code"):
|
360 |
+
generated_code = generate_code(code_idea)
|
361 |
+
st.code(generated_code, language="python")
|
362 |
+
|
363 |
+
elif app_mode == "Workspace Chat App":
|
364 |
+
# Workspace Chat App
|
365 |
+
st.header("Workspace Chat App")
|
366 |
+
|
367 |
+
# Project Workspace Creation
|
368 |
+
st.subheader("Create a New Project")
|
369 |
+
project_name = st.text_input("Enter project name:")
|
370 |
+
if st.button("Create Project"):
|
371 |
+
workspace_status = workspace_interface(project_name)
|
372 |
+
st.success(workspace_status)
|
373 |
+
|
374 |
+
# Automatically create requirements.txt and app.py
|
375 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
376 |
+
requirements_file = os.path.join(project_path, "requirements.txt")
|
377 |
+
if not os.path.exists(requirements_file):
|
378 |
+
with open(requirements_file, "w") as f:
|
379 |
+
f.write("# Add your project's dependencies here\n")
|
380 |
+
|
381 |
+
app_file = os.path.join(project_path, "app.py")
|
382 |
+
if not os.path.exists(app_file):
|
383 |
+
with open(app_file, "w") as f:
|
384 |
+
f.write("# Your project's main application logic goes here\n")
|
385 |
+
|
386 |
+
# Add Code to Workspace
|
387 |
+
st.subheader("Add Code to Workspace")
|
388 |
+
code_to_add = st.text_area("Enter code to add to workspace:")
|
389 |
+
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
|
390 |
+
if st.button("Add Code"):
|
391 |
+
add_code_status = add_code_to_workspace(
|
392 |
+
project_name, code_to_add, file_name)
|
393 |
+
st.session_state.terminal_history.append(
|
394 |
+
(f"Add Code: {code_to_add}", add_code_status))
|
395 |
+
st.success(add_code_status)
|
396 |
+
|
397 |
+
# Terminal Interface with Project Context
|
398 |
+
st.subheader("Terminal (Workspace Context)")
|
399 |
+
terminal_input = st.text_input("Enter a command within the workspace:")
|
400 |
+
if st.button("Run Command"):
|
401 |
+
terminal_output = terminal_interface(terminal_input, project_name)
|
402 |
+
st.session_state.terminal_history.append(
|
403 |
+
(terminal_input, terminal_output))
|
404 |
+
st.code(terminal_output, language="bash")
|
405 |
+
|
406 |
+
# Chat Interface for Guidance
|
407 |
+
st.subheader("Chat with CodeCraft for Guidance")
|
408 |
+
chat_input = st.text_area("Enter your message for guidance:")
|
409 |
+
if st.button("Get Guidance"):
|
410 |
+
chat_response = chat_interface(chat_input)
|
411 |
+
st.session_state.chat_history.append((chat_input, chat_response))
|
412 |
+
st.write(f"CodeCraft: {chat_response}")
|
413 |
+
|
414 |
+
# Display Chat History
|
415 |
+
st.subheader("Chat History")
|
416 |
+
for user_input, response in st.session_state.chat_history:
|
417 |
+
st.write(f"User: {user_input}")
|
418 |
+
st.write(f"CodeCraft: {response}")
|
419 |
+
|
420 |
+
# Display Terminal History
|
421 |
+
st.subheader("Terminal History")
|
422 |
+
for command, output in st.session_state.terminal_history:
|
423 |
+
st.write(f"Command: {command}")
|
424 |
+
st.code(output, language="bash")
|
425 |
+
|
426 |
+
# Display Projects and Files
|
427 |
+
st.subheader("Workspace Projects")
|
428 |
+
for project, details in st.session_state.workspace_projects.items():
|
429 |
+
st.write(f"Project: {project}")
|
430 |
+
for file in details['files']:
|
431 |
+
st.write(f" - {file}")
|
432 |
+
|
433 |
+
# Chat with AI Agents
|
434 |
+
st.subheader("Chat with AI Agents")
|
435 |
+
selected_agent = st.selectbox(
|
436 |
+
"Select an AI agent", st.session_state.available_agents)
|
437 |
+
agent_chat_input = st.text_area("Enter your message for the agent:")
|
438 |
+
if st.button("Send to Agent"):
|
439 |
+
agent_chat_response = chat_interface_with_agent(
|
440 |
+
agent_chat_input, selected_agent)
|
441 |
+
st.session_state.chat_history.append(
|
442 |
+
(agent_chat_input, agent_chat_response))
|
443 |
+
st.write(f"{selected_agent}: {agent_chat_response}")
|
444 |
+
|
445 |
+
# Code Generation
|
446 |
+
st.subheader("Code Generation")
|
447 |
+
code_idea = st.text_input("Enter your code idea:")
|
448 |
+
|
449 |
+
# Model Selection Menu
|
450 |
+
selected_model = st.selectbox(
|
451 |
+
"Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
|
452 |
+
|
453 |
+
if st.button("Generate Code"):
|
454 |
+
generated_code = generate_code(code_idea, selected_model)
|
455 |
+
st.code(generated_code, language="python")
|
456 |
+
|
457 |
+
# Automate Build Process
|
458 |
+
st.subheader("Automate Build Process")
|
459 |
+
if st.button("Automate"):
|
460 |
+
# Load the agent without skills for now
|
461 |
+
agent = AIAgent(selected_agent, "", [])
|
462 |
+
summary, next_step = agent.autonomous_build(
|
463 |
+
st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model)
|
464 |
+
st.write("Autonomous Build Summary:")
|
465 |
+
st.write(summary)
|
466 |
+
st.write("Next Step:")
|
467 |
+
st.write(next_step)
|
468 |
+
|
469 |
+
# If everything went well, proceed to deploy the Space
|
470 |
+
if agent._hf_api and agent.has_valid_hf_token():
|
471 |
+
agent.deploy_built_space_to_hf()
|
472 |
+
# Use the hf_token to interact with the Hugging Face API
|
473 |
+
api = HfApi(token="hf_token") # Function to create a Space on Hugging Face
|
474 |
+
create_space_on_hugging_face(api, agent.name, agent.description, True, get_built_space_files())
|