acecalisto3 commited on
Commit
a0a17b8
·
verified ·
1 Parent(s): cc1c2fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -214
app.py CHANGED
@@ -1,82 +1,36 @@
1
  import os
2
- import subprocess
3
- from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
4
- import black
5
- from pylint import lint
6
- from io import StringIO
7
  import sys
8
- import torch
9
- from huggingface_hub import hf_hub_url, cached_download, HfApi, InferenceClient
10
  import base64
11
- import streamlit as st
12
-
13
- # Use a publicly available model that doesn't require authentication
14
- rag_retriever = pipeline("retrieval-question-answering", model="distilbert-base-nq")
15
-
16
- st.write("Pipeline created successfully")
17
-
18
- # Add the new HTML code below
19
- custom_html = '''
20
- <div style='position:fixed;bottom:0;left:0;width:100%;'>
21
- <iframe width="100%" scrolling="no" title="CodeGPT Widget" frameborder="0" allowtransparency sandbox="" allowfullscreen="" data-widget-id="c265505c-e667-4af2-b492-291da888ee7c" src="https://widget.codegpt.co/chat-widget.js"></iframe>
22
- </div>'''
23
-
24
- # Update the markdown function to accept custom HTML code
25
- def markdown_with_custom_html(md, html):
26
- md_content = md
27
- if html:
28
- return f"{md_content}\n\n{html}"
29
- else:
30
- return md_content
31
-
32
-
33
- markdown_text = "Compare model responses with me!"
34
- markdown_with_custom_html(markdown_text, custom_html)
35
-
36
 
37
- # Set your Hugging Face API key here
38
- # hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
39
- # Get Hugging Face token from secrets.toml - this line should already be in the main code
40
- hf_token = os.environ.get("HUGGINGFACE_TOKEN")("key")
41
 
42
- HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
43
- PROJECT_ROOT = "projects"
44
- AGENT_DIRECTORY = "agents"
45
 
46
  # Global state to manage communication between Tool Box and Workspace Chat App
47
- if 'chat_history' not in st.session_state:
48
  st.session_state.chat_history = []
49
- if 'terminal_history' not in st.session_state:
50
  st.session_state.terminal_history = []
51
- if 'workspace_projects' not in st.session_state:
52
  st.session_state.workspace_projects = {}
53
- if 'available_agents' not in st.session_state:
54
- st.session_state.available_agents = []
55
- if 'current_state' not in st.session_state:
56
- st.session_state.current_state = {
57
- 'toolbox': {},
58
- 'workspace_chat': {}
59
- }
60
-
61
- # List of top downloaded free code-generative models from Hugging Face Hub
62
- AVAILABLE_CODE_GENERATIVE_MODELS = [
63
- "bigcode/starcoder", # Popular and powerful
64
- "Salesforce/codegen-350M-mono", # Smaller, good for quick tasks
65
- "microsoft/CodeGPT-small", # Smaller, good for quick tasks
66
- "google/flan-t5-xl", # Powerful, good for complex tasks
67
- "facebook/bart-large-cnn", # Good for text-to-code tasks
68
- ]
69
 
70
  # Load pre-trained RAG retriever
71
- # rag_retriever = RagRetriever.from_pretrained("facebook/rag-token-base") # Use a Hugging Face RAG model
72
 
73
  # Load pre-trained chat model
74
- chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Use a Hugging Face chat model
75
 
76
  # Load tokenizer
77
  tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
78
 
79
- def process_input(user_input):
80
  # Input pipeline: Tokenize and preprocess user input
81
  input_ids = tokenizer(user_input, return_tensors="pt").input_ids
82
  attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
@@ -98,12 +52,12 @@ def process_input(user_input):
98
  return refined_response
99
 
100
  class AIAgent:
101
- def __init__(self, name, description, skills, hf_api=None):
102
  self.name = name
103
  self.description = description
104
  self.skills = skills
105
  self._hf_api = hf_api
106
- self._hf_token = hf_token # Store the token here
107
 
108
  @property
109
  def hf_api(self):
@@ -114,11 +68,10 @@ class AIAgent:
114
  def has_valid_hf_token(self):
115
  return bool(self._hf_token)
116
 
117
- async def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token):
118
- self._hf_token = hf_token
119
  # Continuation of previous methods
120
- summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
121
- summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
122
 
123
  # Analyze chat history and workspace projects to suggest actions
124
  # Example:
@@ -152,14 +105,16 @@ class AIAgent:
152
 
153
  # Generate GUI code for app.py if requested
154
  if "create a gui" in summary.lower():
155
- gui_code = generate_code("Create a simple GUI for this application", selected_model)
 
156
  with open(app_file, "a") as f:
157
  f.write(gui_code)
158
 
159
  # Run the default build process
160
  build_command = "pip install -r requirements.txt && python app.py"
161
  try:
162
- result = subprocess.run(build_command, shell=True, capture_output=True, text=True, cwd=project_path)
 
163
  st.write(f"Build Output:\n{result.stdout}")
164
  if result.stderr:
165
  st.error(f"Build Errors:\n{result.stderr}")
@@ -167,32 +122,16 @@ class AIAgent:
167
  st.error(f"Build Error: {e}")
168
 
169
  return summary, next_step
170
-
171
- def deploy_built_space_to_hf(self):
172
- if not self._hf_api or not self._hf_token:
173
- raise ValueError("Cannot deploy the Space since no valid Hugoging Face API connection was established.")
174
-
175
- # Assuming you have a function to get the files for your Space
176
- repository_name = f"my-awesome-space_{datetime.now().timestamp()}"
177
- files = get_built_space_files() # Placeholder - you'll need to define this function
178
-
179
- # Create the Space
180
- create_space(self.hf_api, repository_name, "Description", True, files)
181
-
182
- st.markdown("## Congratulations! Successfully deployed Space 🚀 ##")
183
- st.markdown(f"[Check out your new Space here](https://huggingface.co/spaces/{repository_name})")
184
-
185
 
186
- # Add any missing functions from your original code (e.g., get_built_space_files)
187
- def get_built_space_files():
188
  # Replace with your logic to gather the files you want to deploy
189
  return {
190
  "app.py": "# Your Streamlit app code here",
191
- "requirements.txt": "streamlit\ntransformers"
192
  # Add other files as needed
193
  }
194
 
195
- def save_agent_to_file(agent):
196
  """Saves the agent's prompt to a file."""
197
  if not os.path.exists(AGENT_DIRECTORY):
198
  os.makedirs(AGENT_DIRECTORY)
@@ -201,7 +140,7 @@ def save_agent_to_file(agent):
201
  file.write(agent.create_agent_prompt())
202
  st.session_state.available_agents.append(agent.name)
203
 
204
- def load_agent_prompt(agent_name):
205
  """Loads an agent prompt from a file."""
206
  file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
207
  if os.path.exists(file_path):
@@ -211,53 +150,39 @@ def load_agent_prompt(agent_name):
211
  else:
212
  return None
213
 
214
- def create_agent_from_text(name, text):
215
- skills = text.split('\n')
216
  agent = AIAgent(name, "AI agent created from text input.", skills)
217
  save_agent_to_file(agent)
218
  return agent.create_agent_prompt()
219
 
220
- def chat_interface_with_agent(input_text, agent_name):
221
  agent_prompt = load_agent_prompt(agent_name)
222
  if agent_prompt is None:
223
  return f"Agent {agent_name} not found."
224
 
225
- model_name ="bigscience/T0_3B"
226
  try:
227
- from transformers import AutoModel, AutoTokenizer # Import AutoModel here
228
- model = ("bigscience/T0_3B")
229
- tokenizer = AutoTokenizer.from_pretrained(model_name)
230
- generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
231
- except EnvironmentError as e:
 
232
  return f"Error loading model: {e}"
233
 
234
- combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
235
-
236
- input_ids = tokenizer.encode(combined_input, return_tensors="pt")
237
- max_input_length = 900
238
- if input_ids.shape[1] > max_input_length:
239
- input_ids = input_ids[:, :max_input_length]
240
-
241
- outputs = model.generate(
242
- input_ids, max_new_tokens=1000, num_return_sequences=1, do_sample=True,
243
- pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
244
- )
245
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
246
- return response
247
-
248
- # Terminal interface
249
- def terminal_interface(command, project_name=None):
250
  if project_name:
251
  project_path = os.path.join(PROJECT_ROOT, project_name)
252
  if not os.path.exists(project_path):
253
  return f"Project {project_name} does not exist."
254
- result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_path)
 
255
  else:
256
  result = subprocess.run(command, shell=True, capture_output=True, text=True)
257
  return result.stdout
258
 
259
- # Code editor interface
260
- def code_editor_interface(code):
261
  try:
262
  formatted_code = black.format_str(code, mode=black.FileMode())
263
  except black.NothingChanged:
@@ -275,26 +200,25 @@ def code_editor_interface(code):
275
 
276
  return formatted_code, lint_message
277
 
278
- # Text summarization tool
279
- def summarize_text(text):
280
  summarizer = pipeline("summarization")
281
  summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
282
  return summary[0]['summary_text']
283
 
284
- # Sentiment analysis tool
285
- def sentiment_analysis(text):
286
  analyzer = pipeline("sentiment-analysis")
287
  result = analyzer(text)
288
  return result[0]['label']
289
 
290
- # Text translation tool (code translation)
291
- def translate_code(code, source_language, target_language):
292
  # Use a Hugging Face translation model instead of OpenAI
293
- translator = pipeline("translation", model="bartowski/Codestral-22B-v0.1-GGUF") # Example: English to Spanish
 
 
294
  translated_code = translator(code, target_lang=target_language)[0]['translation_text']
295
  return translated_code
296
 
297
- def generate_code(code_idea, model_name):
298
  """Generates code using the selected model."""
299
  try:
300
  generator = pipeline('text-generation', model=model_name)
@@ -303,15 +227,14 @@ def generate_code(code_idea, model_name):
303
  except Exception as e:
304
  return f"Error generating code: {e}"
305
 
306
- def chat_interface(input_text):
307
  """Handles general chat interactions with the user."""
308
  # Use a Hugging Face chatbot model or your own logic
309
  chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
310
  response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
311
  return response
312
 
313
- # Workspace interface
314
- def workspace_interface(project_name):
315
  project_path = os.path.join(PROJECT_ROOT, project_name)
316
  if not os.path.exists(project_path):
317
  os.makedirs(project_path)
@@ -320,19 +243,18 @@ def workspace_interface(project_name):
320
  else:
321
  return f"Project '{project_name}' already exists."
322
 
323
- # Add code to workspace
324
- def add_code_to_workspace(project_name, code, file_name):
325
  project_path = os.path.join(PROJECT_ROOT, project_name)
326
  if not os.path.exists(project_path):
327
  return f"Project '{project_name}' does not exist."
328
-
329
  file_path = os.path.join(project_path, file_name)
330
  with open(file_path, "w") as file:
331
  file.write(code)
332
  st.session_state.workspace_projects[project_name]['files'].append(file_name)
333
  return f"Code added to '{file_name}' in project '{project_name}'."
334
 
335
- def create_space(api, name, description, public, files, entrypoint="launch.py"):
336
  url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
337
  headers = {"Authorization": f"Bearer {api.access_token}"}
338
  payload = {
@@ -347,7 +269,7 @@ def create_space(api, name, description, public, files, entrypoint="launch.py"):
347
  "content": contents,
348
  "path": filename,
349
  "encoding": "utf-8",
350
- "mode": "overwrite" if "#\{random.randint(0, 1)\}" not in contents else "merge",
351
  }
352
  payload["files"].append(data)
353
  response = requests.post(url, json=payload, headers=headers)
@@ -362,10 +284,8 @@ st.title("AI Agent Creator")
362
 
363
  # Sidebar navigation
364
  st.sidebar.title("Navigation")
365
- app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
366
-
367
- # Get Hugging Face token from secrets.toml
368
- hf_token = st.secrets["huggingface"]
369
 
370
  if app_mode == "AI Agent Creator":
371
  # AI Agent Creator
@@ -396,7 +316,8 @@ elif app_mode == "Tool Box":
396
  terminal_input = st.text_input("Enter a command:")
397
  if st.button("Run"):
398
  terminal_output = terminal_interface(terminal_input)
399
- st.session_state.terminal_history.append((terminal_input, terminal_output))
 
400
  st.code(terminal_output, language="bash")
401
 
402
  # Code Editor Interface
@@ -425,9 +346,11 @@ elif app_mode == "Tool Box":
425
  st.subheader("Translate Code")
426
  code_to_translate = st.text_area("Enter code to translate:")
427
  source_language = st.text_input("Enter source language (e.g., 'Python'):")
428
- target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
 
429
  if st.button("Translate Code"):
430
- translated_code = translate_code(code_to_translate, source_language, target_language)
 
431
  st.code(translated_code, language=target_language.lower())
432
 
433
  # Code Generation
@@ -440,56 +363,7 @@ elif app_mode == "Tool Box":
440
  elif app_mode == "Workspace Chat App":
441
  # Workspace Chat App
442
  st.header("Workspace Chat App")
443
- def get_built_space_files():
444
- """
445
- Gathers the necessary files for the Hugging Face Space,
446
- handling different project structures and file types.
447
- """
448
- files = {}
449
-
450
- # Get the current project name (adjust as needed)
451
- project_name = st.session_state.get('project_name', 'my_project')
452
- project_path = os.path.join(PROJECT_ROOT, project_name)
453
 
454
- # Define a list of files/directories to search for
455
- targets = [
456
- "app.py",
457
- "requirements.txt",
458
- "Dockerfile",
459
- "docker-compose.yml", # Example YAML file
460
- "src", # Example subdirectory
461
- "assets" # Another example subdirectory
462
- ]
463
-
464
- # Iterate through the targets
465
- for target in targets:
466
- target_path = os.path.join(project_path, target)
467
-
468
- # If the target is a file, add it to the files dictionary
469
- if os.path.isfile(target_path):
470
- add_file_to_dictionary(files, target_path)
471
-
472
- # If the target is a directory, recursively search for files within it
473
- elif os.path.isdir(target_path):
474
- for root, _, filenames in os.walk(target_path):
475
- for filename in filenames:
476
- file_path = os.path.join(root, filename)
477
- add_file_to_dictionary(files, file_path)
478
-
479
- return files
480
-
481
- def add_file_to_dictionary(files, file_path):
482
- """Helper function to add a file to the files dictionary."""
483
- filename = os.path.relpath(file_path, PROJECT_ROOT) # Get relative path
484
-
485
- # Handle text and binary files
486
- if filename.endswith((".py", ".txt", ".json", ".html", ".css", ".yml", ".yaml")):
487
- with open(file_path, "r") as f:
488
- files[filename] = f.read()
489
- else:
490
- with open(file_path, "rb") as f:
491
- file_content = f.read()
492
- files[filename] = base64.b64encode(file_content).decode("utf-8")
493
  # Project Workspace Creation
494
  st.subheader("Create a New Project")
495
  project_name = st.text_input("Enter project name:")
@@ -514,8 +388,10 @@ def add_file_to_dictionary(files, file_path):
514
  code_to_add = st.text_area("Enter code to add to workspace:")
515
  file_name = st.text_input("Enter file name (e.g., 'app.py'):")
516
  if st.button("Add Code"):
517
- add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
518
- st.session_state.terminal_history.append((f"Add Code: {code_to_add}", add_code_status))
 
 
519
  st.success(add_code_status)
520
 
521
  # Terminal Interface with Project Context
@@ -523,7 +399,8 @@ def add_file_to_dictionary(files, file_path):
523
  terminal_input = st.text_input("Enter a command within the workspace:")
524
  if st.button("Run Command"):
525
  terminal_output = terminal_interface(terminal_input, project_name)
526
- st.session_state.terminal_history.append((terminal_input, terminal_output))
 
527
  st.code(terminal_output, language="bash")
528
 
529
  # Chat Interface for Guidance
@@ -555,11 +432,14 @@ def add_file_to_dictionary(files, file_path):
555
 
556
  # Chat with AI Agents
557
  st.subheader("Chat with AI Agents")
558
- selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
 
559
  agent_chat_input = st.text_area("Enter your message for the agent:")
560
  if st.button("Send to Agent"):
561
- agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
562
- st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
 
 
563
  st.write(f"{selected_agent}: {agent_chat_response}")
564
 
565
  # Code Generation
@@ -567,7 +447,8 @@ def add_file_to_dictionary(files, file_path):
567
  code_idea = st.text_input("Enter your code idea:")
568
 
569
  # Model Selection Menu
570
- selected_model = st.selectbox("Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
 
571
 
572
  if st.button("Generate Code"):
573
  generated_code = generate_code(code_idea, selected_model)
@@ -576,17 +457,10 @@ def add_file_to_dictionary(files, file_path):
576
  # Automate Build Process
577
  st.subheader("Automate Build Process")
578
  if st.button("Automate"):
579
- agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
580
- summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model)
581
- st.write("Autonomous Build Summary:")
582
- st.write(summary)
583
- st.write("Next Step:")
584
- st.write(next_step)
585
-
586
- # Using the modified and extended class and functions, update the callback for the 'Automate' button in the Streamlit UI:
587
- if st.button("Automate", args=(hf_token,)):
588
- agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
589
- summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token)
590
  st.write("Autonomous Build Summary:")
591
  st.write(summary)
592
  st.write("Next Step:")
@@ -594,11 +468,7 @@ def add_file_to_dictionary(files, file_path):
594
 
595
  # If everything went well, proceed to deploy the Space
596
  if agent._hf_api and agent.has_valid_hf_token():
597
- agent.deploy_built_space_to_hf()
598
  # Use the hf_token to interact with the Hugging Face API
599
- api = HfApi(token="HUGGINGFACE_TOKEN")
600
- # Function to create a Space on Hugging Face
601
- def create_space(api, name, description, public, files, entrypoint="launch.py"):
602
- url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
603
- headers = {"Authorization": f"Bearer {api.access_token}"}
604
-
 
1
  import os
 
 
 
 
 
2
  import sys
3
+ import subprocess
 
4
  import base64
5
+ import json
6
+ from io import StringIO
7
+ from typing import Dict, List
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ import streamlit as st
10
+ from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
11
+ from pylint import lint
 
12
 
13
+ # Add your Hugging Face API token here
14
+ hf_token = st.secrets["hf_token"]
 
15
 
16
  # Global state to manage communication between Tool Box and Workspace Chat App
17
+ if "chat_history" not in st.session_state:
18
  st.session_state.chat_history = []
19
+ if "terminal_history" not in st.session_state:
20
  st.session_state.terminal_history = []
21
+ if "workspace_projects" not in st.session_state:
22
  st.session_state.workspace_projects = {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  # Load pre-trained RAG retriever
25
+ rag_retriever = pipeline("retrieval-question-answering", model="facebook/rag-token-base")
26
 
27
  # Load pre-trained chat model
28
+ chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium")
29
 
30
  # Load tokenizer
31
  tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
32
 
33
+ def process_input(user_input: str) -> str:
34
  # Input pipeline: Tokenize and preprocess user input
35
  input_ids = tokenizer(user_input, return_tensors="pt").input_ids
36
  attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
 
52
  return refined_response
53
 
54
  class AIAgent:
55
+ def __init__(self, name: str, description: str, skills: List[str], hf_api=None):
56
  self.name = name
57
  self.description = description
58
  self.skills = skills
59
  self._hf_api = hf_api
60
+ self._hf_token = hf_token
61
 
62
  @property
63
  def hf_api(self):
 
68
  def has_valid_hf_token(self):
69
  return bool(self._hf_token)
70
 
71
+ async def autonomous_build(self, chat_history: List[str], workspace_projects: Dict[str, str], project_name: str, selected_model: str):
 
72
  # Continuation of previous methods
73
+ summary = "Chat History:\n" + "\n".join(chat_history)
74
+ summary += "\n\nWorkspace Projects:\n" + "\n".join(workspace_projects.items())
75
 
76
  # Analyze chat history and workspace projects to suggest actions
77
  # Example:
 
105
 
106
  # Generate GUI code for app.py if requested
107
  if "create a gui" in summary.lower():
108
+ gui_code = generate_code(
109
+ "Create a simple GUI for this application", selected_model)
110
  with open(app_file, "a") as f:
111
  f.write(gui_code)
112
 
113
  # Run the default build process
114
  build_command = "pip install -r requirements.txt && python app.py"
115
  try:
116
+ result = subprocess.run(
117
+ build_command, shell=True, capture_output=True, text=True, cwd=project_path)
118
  st.write(f"Build Output:\n{result.stdout}")
119
  if result.stderr:
120
  st.error(f"Build Errors:\n{result.stderr}")
 
122
  st.error(f"Build Error: {e}")
123
 
124
  return summary, next_step
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
+ def get_built_space_files() -> Dict[str, str]:
 
127
  # Replace with your logic to gather the files you want to deploy
128
  return {
129
  "app.py": "# Your Streamlit app code here",
130
+ "requirements.txt": "streamlit\ntransformers"
131
  # Add other files as needed
132
  }
133
 
134
+ def save_agent_to_file(agent: AIAgent):
135
  """Saves the agent's prompt to a file."""
136
  if not os.path.exists(AGENT_DIRECTORY):
137
  os.makedirs(AGENT_DIRECTORY)
 
140
  file.write(agent.create_agent_prompt())
141
  st.session_state.available_agents.append(agent.name)
142
 
143
+ def load_agent_prompt(agent_name: str) -> str:
144
  """Loads an agent prompt from a file."""
145
  file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
146
  if os.path.exists(file_path):
 
150
  else:
151
  return None
152
 
153
+ def create_agent_from_text(name: str, text: str) -> str:
154
+ skills = text.split("\n")
155
  agent = AIAgent(name, "AI agent created from text input.", skills)
156
  save_agent_to_file(agent)
157
  return agent.create_agent_prompt()
158
 
159
+ def chat_interface_with_agent(input_text: str, agent_name: str) -> str:
160
  agent_prompt = load_agent_prompt(agent_name)
161
  if agent_prompt is None:
162
  return f"Agent {agent_name} not found."
163
 
164
+ model_name = "MaziyarPanahi/Codestral-22B-v0.1-GGUF"
165
  try:
166
+ generator = pipeline("text-generation", model=model_name)
167
+ generator.tokenizer.pad_token = generator.tokenizer.eos_token
168
+ generated_response = generator(
169
+ f"{agent_prompt}\n\nUser: {input_text}\nAgent:", max_length=100, do_sample=True, top_k=50)[0]["generated_text"]
170
+ return generated_response
171
+ except Exception as e:
172
  return f"Error loading model: {e}"
173
 
174
+ def terminal_interface(command: str, project_name: str = None) -> str:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  if project_name:
176
  project_path = os.path.join(PROJECT_ROOT, project_name)
177
  if not os.path.exists(project_path):
178
  return f"Project {project_name} does not exist."
179
+ result = subprocess.run(
180
+ command, shell=True, capture_output=True, text=True, cwd=project_path)
181
  else:
182
  result = subprocess.run(command, shell=True, capture_output=True, text=True)
183
  return result.stdout
184
 
185
+ def code_editor_interface(code: str) -> str:
 
186
  try:
187
  formatted_code = black.format_str(code, mode=black.FileMode())
188
  except black.NothingChanged:
 
200
 
201
  return formatted_code, lint_message
202
 
203
+ def summarize_text(text: str) -> str:
 
204
  summarizer = pipeline("summarization")
205
  summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
206
  return summary[0]['summary_text']
207
 
208
+ def sentiment_analysis(text: str) -> str:
 
209
  analyzer = pipeline("sentiment-analysis")
210
  result = analyzer(text)
211
  return result[0]['label']
212
 
213
+ def translate_code(code: str, source_language: str, target_language: str) -> str:
 
214
  # Use a Hugging Face translation model instead of OpenAI
215
+ # Example: English to Spanish
216
+ translator = pipeline(
217
+ "translation", model="bartowski/Codestral-22B-v0.1-GGUF")
218
  translated_code = translator(code, target_lang=target_language)[0]['translation_text']
219
  return translated_code
220
 
221
+ def generate_code(code_idea: str, model_name: str) -> str:
222
  """Generates code using the selected model."""
223
  try:
224
  generator = pipeline('text-generation', model=model_name)
 
227
  except Exception as e:
228
  return f"Error generating code: {e}"
229
 
230
+ def chat_interface(input_text: str) -> str:
231
  """Handles general chat interactions with the user."""
232
  # Use a Hugging Face chatbot model or your own logic
233
  chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
234
  response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
235
  return response
236
 
237
+ def workspace_interface(project_name: str) -> str:
 
238
  project_path = os.path.join(PROJECT_ROOT, project_name)
239
  if not os.path.exists(project_path):
240
  os.makedirs(project_path)
 
243
  else:
244
  return f"Project '{project_name}' already exists."
245
 
246
+ def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
 
247
  project_path = os.path.join(PROJECT_ROOT, project_name)
248
  if not os.path.exists(project_path):
249
  return f"Project '{project_name}' does not exist."
250
+
251
  file_path = os.path.join(project_path, file_name)
252
  with open(file_path, "w") as file:
253
  file.write(code)
254
  st.session_state.workspace_projects[project_name]['files'].append(file_name)
255
  return f"Code added to '{file_name}' in project '{project_name}'."
256
 
257
+ def create_space_on_hugging_face(api, name, description, public, files, entrypoint="launch.py"):
258
  url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
259
  headers = {"Authorization": f"Bearer {api.access_token}"}
260
  payload = {
 
269
  "content": contents,
270
  "path": filename,
271
  "encoding": "utf-8",
272
+ "mode": "overwrite"
273
  }
274
  payload["files"].append(data)
275
  response = requests.post(url, json=payload, headers=headers)
 
284
 
285
  # Sidebar navigation
286
  st.sidebar.title("Navigation")
287
+ app_mode = st.sidebar.selectbox(
288
+ "Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
 
 
289
 
290
  if app_mode == "AI Agent Creator":
291
  # AI Agent Creator
 
316
  terminal_input = st.text_input("Enter a command:")
317
  if st.button("Run"):
318
  terminal_output = terminal_interface(terminal_input)
319
+ st.session_state.terminal_history.append(
320
+ (terminal_input, terminal_output))
321
  st.code(terminal_output, language="bash")
322
 
323
  # Code Editor Interface
 
346
  st.subheader("Translate Code")
347
  code_to_translate = st.text_area("Enter code to translate:")
348
  source_language = st.text_input("Enter source language (e.g., 'Python'):")
349
+ target_language = st.text_input(
350
+ "Enter target language (e.g., 'JavaScript'):")
351
  if st.button("Translate Code"):
352
+ translated_code = translate_code(
353
+ code_to_translate, source_language, target_language)
354
  st.code(translated_code, language=target_language.lower())
355
 
356
  # Code Generation
 
363
  elif app_mode == "Workspace Chat App":
364
  # Workspace Chat App
365
  st.header("Workspace Chat App")
 
 
 
 
 
 
 
 
 
 
366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367
  # Project Workspace Creation
368
  st.subheader("Create a New Project")
369
  project_name = st.text_input("Enter project name:")
 
388
  code_to_add = st.text_area("Enter code to add to workspace:")
389
  file_name = st.text_input("Enter file name (e.g., 'app.py'):")
390
  if st.button("Add Code"):
391
+ add_code_status = add_code_to_workspace(
392
+ project_name, code_to_add, file_name)
393
+ st.session_state.terminal_history.append(
394
+ (f"Add Code: {code_to_add}", add_code_status))
395
  st.success(add_code_status)
396
 
397
  # Terminal Interface with Project Context
 
399
  terminal_input = st.text_input("Enter a command within the workspace:")
400
  if st.button("Run Command"):
401
  terminal_output = terminal_interface(terminal_input, project_name)
402
+ st.session_state.terminal_history.append(
403
+ (terminal_input, terminal_output))
404
  st.code(terminal_output, language="bash")
405
 
406
  # Chat Interface for Guidance
 
432
 
433
  # Chat with AI Agents
434
  st.subheader("Chat with AI Agents")
435
+ selected_agent = st.selectbox(
436
+ "Select an AI agent", st.session_state.available_agents)
437
  agent_chat_input = st.text_area("Enter your message for the agent:")
438
  if st.button("Send to Agent"):
439
+ agent_chat_response = chat_interface_with_agent(
440
+ agent_chat_input, selected_agent)
441
+ st.session_state.chat_history.append(
442
+ (agent_chat_input, agent_chat_response))
443
  st.write(f"{selected_agent}: {agent_chat_response}")
444
 
445
  # Code Generation
 
447
  code_idea = st.text_input("Enter your code idea:")
448
 
449
  # Model Selection Menu
450
+ selected_model = st.selectbox(
451
+ "Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
452
 
453
  if st.button("Generate Code"):
454
  generated_code = generate_code(code_idea, selected_model)
 
457
  # Automate Build Process
458
  st.subheader("Automate Build Process")
459
  if st.button("Automate"):
460
+ # Load the agent without skills for now
461
+ agent = AIAgent(selected_agent, "", [])
462
+ summary, next_step = agent.autonomous_build(
463
+ st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model)
 
 
 
 
 
 
 
464
  st.write("Autonomous Build Summary:")
465
  st.write(summary)
466
  st.write("Next Step:")
 
468
 
469
  # If everything went well, proceed to deploy the Space
470
  if agent._hf_api and agent.has_valid_hf_token():
471
+ agent.deploy_built_space_to_hf()
472
  # Use the hf_token to interact with the Hugging Face API
473
+ api = HfApi(token="hf_token") # Function to create a Space on Hugging Face
474
+ create_space_on_hugging_face(api, agent.name, agent.description, True, get_built_space_files())