Spaces:
Running
Running
acecalisto3
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import subprocess
|
4 |
-
import random
|
5 |
-
import string
|
6 |
-
from huggingface_hub import cached_download, hf_hub_url
|
7 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
8 |
import black
|
9 |
-
import
|
10 |
-
from
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Define functions for each feature
|
15 |
|
@@ -23,22 +33,36 @@ def chat_interface(input_text):
|
|
23 |
Returns:
|
24 |
The chatbot's response.
|
25 |
"""
|
26 |
-
# Load the
|
27 |
-
model_name =
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Generate chatbot response
|
33 |
-
|
|
|
|
|
|
|
34 |
return response
|
35 |
|
|
|
36 |
# 2. Terminal
|
37 |
-
def terminal_interface(command):
|
38 |
"""Executes commands in the terminal.
|
39 |
|
40 |
Args:
|
41 |
command: User's command.
|
|
|
42 |
|
43 |
Returns:
|
44 |
The terminal output.
|
@@ -47,10 +71,18 @@ def terminal_interface(command):
|
|
47 |
try:
|
48 |
process = subprocess.run(command.split(), capture_output=True, text=True)
|
49 |
output = process.stdout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
except Exception as e:
|
51 |
-
output = f
|
52 |
return output
|
53 |
|
|
|
54 |
# 3. Code Editor
|
55 |
def code_editor_interface(code):
|
56 |
"""Provides code completion, formatting, and linting in the code editor.
|
@@ -69,14 +101,19 @@ def code_editor_interface(code):
|
|
69 |
|
70 |
# Lint code using pylint
|
71 |
try:
|
72 |
-
pylint_output =
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
except Exception as e:
|
76 |
lint_message = f"Pylint error: {e}"
|
77 |
|
78 |
return formatted_code, lint_message
|
79 |
|
|
|
80 |
# 4. Workspace
|
81 |
def workspace_interface(project_name):
|
82 |
"""Manages projects, files, and resources in the workspace.
|
@@ -87,14 +124,43 @@ def workspace_interface(project_name):
|
|
87 |
Returns:
|
88 |
Project creation status.
|
89 |
"""
|
|
|
90 |
# Create project directory
|
91 |
try:
|
92 |
-
os.makedirs(
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
except FileExistsError:
|
95 |
-
status = f'Project
|
96 |
return status
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
# 5. AI-Infused Tools
|
99 |
|
100 |
# Define custom AI-powered tools using Hugging Face models
|
@@ -109,13 +175,78 @@ def summarize_text(text):
|
|
109 |
Returns:
|
110 |
Summarized text.
|
111 |
"""
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
return summary
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
# 6. Code Generation
|
117 |
def generate_code(idea):
|
118 |
-
"""Generates code based on a given idea using the
|
119 |
|
120 |
Args:
|
121 |
idea: The idea for the code to be generated.
|
@@ -125,9 +256,12 @@ def generate_code(idea):
|
|
125 |
"""
|
126 |
|
127 |
# Load the code generation model
|
128 |
-
model_name =
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
131 |
|
132 |
# Generate the code
|
133 |
input_text = f"""
|
@@ -151,119 +285,202 @@ def generate_code(idea):
|
|
151 |
|
152 |
return generated_code
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
157 |
|
158 |
Args:
|
159 |
-
text:
|
160 |
|
161 |
Returns:
|
162 |
-
|
163 |
"""
|
164 |
-
|
165 |
-
|
166 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
167 |
-
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
168 |
-
result = classifier(text)[0]
|
169 |
-
return result
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
translation = translator(text, target_lang=target_language)[0]['translation_text']
|
184 |
-
return translation
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
st.sidebar.header("Select Workspace")
|
191 |
-
project_name = st.sidebar.selectbox("Choose a project", os.listdir('projects'))
|
192 |
-
|
193 |
-
# Chat Interface
|
194 |
-
st.header("Chat with CodeCraft")
|
195 |
-
chat_input = st.text_area("Enter your message:")
|
196 |
-
if st.button("Send"):
|
197 |
-
chat_response = chat_interface(chat_input)
|
198 |
-
st.write(f"CodeCraft: {chat_response}")
|
199 |
-
|
200 |
-
# Terminal Interface
|
201 |
-
st.header("Terminal")
|
202 |
-
terminal_input = st.text_input("Enter a command:")
|
203 |
-
if st.button("Run"):
|
204 |
-
terminal_output = terminal_interface(terminal_input)
|
205 |
-
st.code(terminal_output, language="bash")
|
206 |
-
|
207 |
-
# Code Editor Interface
|
208 |
-
st.header("Code Editor")
|
209 |
-
code_editor = st.text_area("Write your code:", language="python", height=300)
|
210 |
-
if st.button("Format & Lint"):
|
211 |
-
formatted_code, lint_message = code_editor_interface(code_editor)
|
212 |
-
st.code(formatted_code, language="python")
|
213 |
-
st.info(lint_message)
|
214 |
-
|
215 |
-
# AI-Infused Tools
|
216 |
-
st.header("AI-Powered Tools")
|
217 |
-
|
218 |
-
# Text Summarization
|
219 |
-
st.subheader("Text Summarization")
|
220 |
-
text_to_summarize = st.text_area("Enter text to summarize:")
|
221 |
-
if st.button("Summarize"):
|
222 |
-
summary = summarize_text(text_to_summarize)
|
223 |
-
st.write(f"Summary: {summary}")
|
224 |
-
|
225 |
-
# Sentiment Analysis
|
226 |
-
st.subheader("Sentiment Analysis")
|
227 |
-
text_to_analyze = st.text_area("Enter text to analyze sentiment:")
|
228 |
-
if st.button("Analyze Sentiment"):
|
229 |
-
sentiment_result = analyze_sentiment(text_to_analyze)
|
230 |
-
st.write(f"Sentiment: {sentiment_result['label']}, Score: {sentiment_result['score']}")
|
231 |
-
|
232 |
-
# Text Translation
|
233 |
-
st.subheader("Text Translation")
|
234 |
-
text_to_translate = st.text_area("Enter text to translate:")
|
235 |
-
target_language = st.selectbox("Choose target language", ['fr', 'es', 'de', 'zh-CN']) # Example languages
|
236 |
-
if st.button("Translate"):
|
237 |
-
translation = translate_text(text_to_translate, target_language)
|
238 |
-
st.write(f"Translation: {translation}")
|
239 |
-
|
240 |
-
# Code Generation
|
241 |
-
st.header("Code Generation")
|
242 |
-
code_idea = st.text_input("Enter your code idea:")
|
243 |
-
if st.button("Generate Code"):
|
244 |
-
try:
|
245 |
-
generated_code = generate_code(code_idea)
|
246 |
-
st.code(generated_code, language="python")
|
247 |
-
except Exception as e:
|
248 |
-
st.error(f"Error generating code: {e}")
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
|
255 |
-
|
256 |
-
hf_token = st.text_input("Enter your Hugging Face Token:")
|
257 |
-
if hf_token:
|
258 |
-
# Set the token using HfFolder
|
259 |
-
HfFolder.save_token(hf_token)
|
260 |
|
261 |
-
|
262 |
-
command = f"cd projects/{project_name} && streamlit run chat_app.py"
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import subprocess
|
|
|
|
|
|
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
import black
|
6 |
+
from pylint import lint
|
7 |
+
from io import StringIO
|
8 |
+
import openai
|
9 |
+
import sys
|
10 |
+
|
11 |
+
# Set your OpenAI API key here
|
12 |
+
openai.api_key = "YOUR_OPENAI_API_KEY"
|
13 |
+
|
14 |
+
PROJECT_ROOT = "projects"
|
15 |
+
|
16 |
+
# Global state to manage communication between Tool Box and Workspace Chat App
|
17 |
+
if 'chat_history' not in st.session_state:
|
18 |
+
st.session_state.chat_history = []
|
19 |
+
if 'terminal_history' not in st.session_state:
|
20 |
+
st.session_state.terminal_history = []
|
21 |
+
if 'workspace_projects' not in st.session_state:
|
22 |
+
st.session_state.workspace_projects = {}
|
23 |
|
24 |
# Define functions for each feature
|
25 |
|
|
|
33 |
Returns:
|
34 |
The chatbot's response.
|
35 |
"""
|
36 |
+
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
|
37 |
+
model_name = "gpt2"
|
38 |
+
try:
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
41 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
42 |
+
except EnvironmentError as e:
|
43 |
+
return f"Error loading model: {e}"
|
44 |
+
|
45 |
+
# Truncate input text to avoid exceeding the model's maximum length
|
46 |
+
max_input_length = 900
|
47 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
48 |
+
if input_ids.shape[1] > max_input_length:
|
49 |
+
input_ids = input_ids[:, :max_input_length]
|
50 |
|
51 |
# Generate chatbot response
|
52 |
+
outputs = model.generate(
|
53 |
+
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True
|
54 |
+
)
|
55 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
56 |
return response
|
57 |
|
58 |
+
|
59 |
# 2. Terminal
|
60 |
+
def terminal_interface(command, project_name=None):
|
61 |
"""Executes commands in the terminal.
|
62 |
|
63 |
Args:
|
64 |
command: User's command.
|
65 |
+
project_name: Name of the project workspace to add installed packages.
|
66 |
|
67 |
Returns:
|
68 |
The terminal output.
|
|
|
71 |
try:
|
72 |
process = subprocess.run(command.split(), capture_output=True, text=True)
|
73 |
output = process.stdout
|
74 |
+
|
75 |
+
# If the command is to install a package, update the workspace
|
76 |
+
if "install" in command and project_name:
|
77 |
+
requirements_path = os.path.join(PROJECT_ROOT, project_name, "requirements.txt")
|
78 |
+
with open(requirements_path, "a") as req_file:
|
79 |
+
package_name = command.split()[-1]
|
80 |
+
req_file.write(f"{package_name}\n")
|
81 |
except Exception as e:
|
82 |
+
output = f"Error: {e}"
|
83 |
return output
|
84 |
|
85 |
+
|
86 |
# 3. Code Editor
|
87 |
def code_editor_interface(code):
|
88 |
"""Provides code completion, formatting, and linting in the code editor.
|
|
|
101 |
|
102 |
# Lint code using pylint
|
103 |
try:
|
104 |
+
pylint_output = StringIO()
|
105 |
+
sys.stdout = pylint_output
|
106 |
+
sys.stderr = pylint_output
|
107 |
+
lint.Run(['--from-stdin'], stdin=StringIO(formatted_code))
|
108 |
+
sys.stdout = sys.__stdout__
|
109 |
+
sys.stderr = sys.__stderr__
|
110 |
+
lint_message = pylint_output.getvalue()
|
111 |
except Exception as e:
|
112 |
lint_message = f"Pylint error: {e}"
|
113 |
|
114 |
return formatted_code, lint_message
|
115 |
|
116 |
+
|
117 |
# 4. Workspace
|
118 |
def workspace_interface(project_name):
|
119 |
"""Manages projects, files, and resources in the workspace.
|
|
|
124 |
Returns:
|
125 |
Project creation status.
|
126 |
"""
|
127 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
128 |
# Create project directory
|
129 |
try:
|
130 |
+
os.makedirs(project_path)
|
131 |
+
requirements_path = os.path.join(project_path, "requirements.txt")
|
132 |
+
with open(requirements_path, "w") as req_file:
|
133 |
+
req_file.write("") # Initialize an empty requirements.txt file
|
134 |
+
status = f'Project "{project_name}" created successfully.'
|
135 |
+
st.session_state.workspace_projects[project_name] = {'files': []}
|
136 |
except FileExistsError:
|
137 |
+
status = f'Project "{project_name}" already exists.'
|
138 |
return status
|
139 |
|
140 |
+
def add_code_to_workspace(project_name, code, file_name):
|
141 |
+
"""Adds selected code files to the workspace.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
project_name: Name of the project.
|
145 |
+
code: Code to be added.
|
146 |
+
file_name: Name of the file to be created.
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
File creation status.
|
150 |
+
"""
|
151 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
152 |
+
file_path = os.path.join(project_path, file_name)
|
153 |
+
|
154 |
+
try:
|
155 |
+
with open(file_path, "w") as code_file:
|
156 |
+
code_file.write(code)
|
157 |
+
status = f'File "{file_name}" added to project "{project_name}" successfully.'
|
158 |
+
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
159 |
+
except Exception as e:
|
160 |
+
status = f"Error: {e}"
|
161 |
+
return status
|
162 |
+
|
163 |
+
|
164 |
# 5. AI-Infused Tools
|
165 |
|
166 |
# Define custom AI-powered tools using Hugging Face models
|
|
|
175 |
Returns:
|
176 |
Summarized text.
|
177 |
"""
|
178 |
+
# Load the summarization model
|
179 |
+
model_name = "facebook/bart-large-cnn"
|
180 |
+
try:
|
181 |
+
summarizer = pipeline("summarization", model=model_name)
|
182 |
+
except EnvironmentError as e:
|
183 |
+
return f"Error loading model: {e}"
|
184 |
+
|
185 |
+
# Truncate input text to avoid exceeding the model's maximum length
|
186 |
+
max_input_length = 1024
|
187 |
+
inputs = text
|
188 |
+
if len(text) > max_input_length:
|
189 |
+
inputs = text[:max_input_length]
|
190 |
+
|
191 |
+
# Generate summary
|
192 |
+
summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][
|
193 |
+
"summary_text"
|
194 |
+
]
|
195 |
return summary
|
196 |
|
197 |
+
# Example: Sentiment analysis tool
|
198 |
+
def sentiment_analysis(text):
|
199 |
+
"""Performs sentiment analysis on a given text using a Hugging Face model.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
text: Text to be analyzed.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
Sentiment analysis result.
|
206 |
+
"""
|
207 |
+
# Load the sentiment analysis model
|
208 |
+
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
209 |
+
try:
|
210 |
+
analyzer = pipeline("sentiment-analysis", model=model_name)
|
211 |
+
except EnvironmentError as e:
|
212 |
+
return f"Error loading model: {e}"
|
213 |
+
|
214 |
+
# Perform sentiment analysis
|
215 |
+
result = analyzer(text)[0]
|
216 |
+
return result
|
217 |
+
|
218 |
+
# Example: Text translation tool (code translation)
|
219 |
+
def translate_code(code, source_language, target_language):
|
220 |
+
"""Translates code from one programming language to another using OpenAI Codex.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
code: Code to be translated.
|
224 |
+
source_language: The source programming language.
|
225 |
+
target_language: The target programming language.
|
226 |
+
|
227 |
+
Returns:
|
228 |
+
Translated code.
|
229 |
+
"""
|
230 |
+
prompt = f"Translate the following {source_language} code to {target_language}:\n\n{code}"
|
231 |
+
try:
|
232 |
+
response = openai.Completion.create(
|
233 |
+
engine="code-davinci-002",
|
234 |
+
prompt=prompt,
|
235 |
+
max_tokens=1024,
|
236 |
+
temperature=0.3,
|
237 |
+
top_p=1,
|
238 |
+
n=1,
|
239 |
+
stop=None
|
240 |
+
)
|
241 |
+
translated_code = response.choices[0].text.strip()
|
242 |
+
except Exception as e:
|
243 |
+
translated_code = f"Error: {e}"
|
244 |
+
return translated_code
|
245 |
+
|
246 |
+
|
247 |
# 6. Code Generation
|
248 |
def generate_code(idea):
|
249 |
+
"""Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model.
|
250 |
|
251 |
Args:
|
252 |
idea: The idea for the code to be generated.
|
|
|
256 |
"""
|
257 |
|
258 |
# Load the code generation model
|
259 |
+
model_name = "EleutherAI/gpt-neo-2.7B"
|
260 |
+
try:
|
261 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
262 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
263 |
+
except EnvironmentError as e:
|
264 |
+
return f"Error loading model: {e}"
|
265 |
|
266 |
# Generate the code
|
267 |
input_text = f"""
|
|
|
285 |
|
286 |
return generated_code
|
287 |
|
288 |
+
|
289 |
+
# 7. AI Personas Creator
|
290 |
+
def create_persona_from_text(text):
|
291 |
+
"""Creates an AI persona from the given text.
|
292 |
|
293 |
Args:
|
294 |
+
text: Text to be used for creating the persona.
|
295 |
|
296 |
Returns:
|
297 |
+
Persona prompt.
|
298 |
"""
|
299 |
+
persona_prompt = f"""
|
300 |
+
As an elite expert developer with the highest level of proficiency in Streamlit, Gradio, and Hugging Face, I possess a comprehensive understanding of these technologies and their applications in web development and deployment. My expertise encompasses the following areas:
|
|
|
|
|
|
|
|
|
301 |
|
302 |
+
Streamlit:
|
303 |
+
* In-depth knowledge of Streamlit's architecture, components, and customization options.
|
304 |
+
* Expertise in creating interactive and user-friendly dashboards and applications.
|
305 |
+
* Proficiency in integrating Streamlit with various data sources and machine learning models.
|
306 |
|
307 |
+
Gradio:
|
308 |
+
* Thorough understanding of Gradio's capabilities for building and deploying machine learning interfaces.
|
309 |
+
* Expertise in creating custom Gradio components and integrating them with Streamlit applications.
|
310 |
+
* Proficiency in using Gradio to deploy models from Hugging Face and other frameworks.
|
311 |
|
312 |
+
Hugging Face:
|
313 |
+
* Comprehensive knowledge of Hugging Face's model hub and Transformers library.
|
314 |
+
* Expertise in fine-tuning and deploying Hugging Face models for various NLP and computer vision tasks.
|
315 |
+
* Proficiency in using Hugging Face's Spaces platform for model deployment and sharing.
|
|
|
|
|
316 |
|
317 |
+
Deployment:
|
318 |
+
* In-depth understanding of best practices for deploying Streamlit and Gradio applications.
|
319 |
+
* Expertise in deploying models on cloud platforms such as AWS, Azure, and GCP.
|
320 |
+
* Proficiency in optimizing deployment configurations for performance and scalability.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
+
Additional Skills:
|
323 |
+
* Strong programming skills in Python and JavaScript.
|
324 |
+
* Familiarity with Docker and containerization technologies.
|
325 |
+
* Excellent communication and problem-solving abilities.
|
326 |
|
327 |
+
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications using Streamlit, Gradio, and Hugging Face. Please feel free to ask any questions or present any challenges you may encounter.
|
|
|
|
|
|
|
|
|
328 |
|
329 |
+
Example:
|
|
|
330 |
|
331 |
+
Task:
|
332 |
+
Develop a Streamlit application that allows users to generate text using a Hugging Face model. The application should include a Gradio component for user input and model prediction.
|
333 |
+
|
334 |
+
Solution:
|
335 |
+
|
336 |
+
import streamlit as st
|
337 |
+
import gradio as gr
|
338 |
+
from transformers import pipeline
|
339 |
+
|
340 |
+
# Create a Hugging Face pipeline
|
341 |
+
huggingface_model = pipeline("text-generation")
|
342 |
+
|
343 |
+
# Create a Streamlit app
|
344 |
+
st.title("Hugging Face Text Generation App")
|
345 |
+
|
346 |
+
# Define a Gradio component
|
347 |
+
demo = gr.Interface(
|
348 |
+
fn=huggingface_model,
|
349 |
+
inputs=gr.Textbox(lines=2),
|
350 |
+
outputs=gr.Textbox(lines=1),
|
351 |
+
)
|
352 |
+
|
353 |
+
# Display the Gradio component in the Streamlit app
|
354 |
+
st.write(demo)
|
355 |
+
"""
|
356 |
+
return persona_prompt
|
357 |
+
|
358 |
+
|
359 |
+
# Streamlit App
|
360 |
+
st.title("AI Personas Creator")
|
361 |
+
|
362 |
+
# Sidebar navigation
|
363 |
+
st.sidebar.title("Navigation")
|
364 |
+
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Personas Creator", "Tool Box", "Workspace Chat App"])
|
365 |
+
|
366 |
+
if app_mode == "AI Personas Creator":
|
367 |
+
# AI Personas Creator
|
368 |
+
st.header("Create the System Prompt of an AI Persona from YouTube or Text")
|
369 |
+
|
370 |
+
st.subheader("From Text")
|
371 |
+
text_input = st.text_area("Enter text to create an AI persona:")
|
372 |
+
if st.button("Create Persona"):
|
373 |
+
persona_prompt = create_persona_from_text(text_input)
|
374 |
+
st.subheader("Persona Prompt")
|
375 |
+
st.text_area("You may now copy the text below and use it as Custom prompt!", value=persona_prompt, height=300)
|
376 |
+
|
377 |
+
elif app_mode == "Tool Box":
|
378 |
+
# Tool Box
|
379 |
+
st.header("AI-Powered Tools")
|
380 |
+
|
381 |
+
# Chat Interface
|
382 |
+
st.subheader("Chat with CodeCraft")
|
383 |
+
chat_input = st.text_area("Enter your message:")
|
384 |
+
if st.button("Send"):
|
385 |
+
chat_response = chat_interface(chat_input)
|
386 |
+
st.session_state.chat_history.append((chat_input, chat_response))
|
387 |
+
st.write(f"CodeCraft: {chat_response}")
|
388 |
+
|
389 |
+
# Terminal Interface
|
390 |
+
st.subheader("Terminal")
|
391 |
+
terminal_input = st.text_input("Enter a command:")
|
392 |
+
if st.button("Run"):
|
393 |
+
terminal_output = terminal_interface(terminal_input)
|
394 |
+
st.session_state.terminal_history.append((terminal_input, terminal_output))
|
395 |
+
st.code(terminal_output, language="bash")
|
396 |
+
|
397 |
+
# Code Editor Interface
|
398 |
+
st.subheader("Code Editor")
|
399 |
+
code_editor = st.text_area("Write your code:", height=300)
|
400 |
+
if st.button("Format & Lint"):
|
401 |
+
formatted_code, lint_message = code_editor_interface(code_editor)
|
402 |
+
st.code(formatted_code, language="python")
|
403 |
+
st.info(lint_message)
|
404 |
+
|
405 |
+
# Text Summarization Tool
|
406 |
+
st.subheader("Summarize Text")
|
407 |
+
text_to_summarize = st.text_area("Enter text to summarize:")
|
408 |
+
if st.button("Summarize"):
|
409 |
+
summary = summarize_text(text_to_summarize)
|
410 |
+
st.write(f"Summary: {summary}")
|
411 |
+
|
412 |
+
# Sentiment Analysis Tool
|
413 |
+
st.subheader("Sentiment Analysis")
|
414 |
+
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
415 |
+
if st.button("Analyze Sentiment"):
|
416 |
+
sentiment = sentiment_analysis(sentiment_text)
|
417 |
+
st.write(f"Sentiment: {sentiment}")
|
418 |
+
|
419 |
+
# Text Translation Tool (Code Translation)
|
420 |
+
st.subheader("Translate Code")
|
421 |
+
code_to_translate = st.text_area("Enter code to translate:")
|
422 |
+
source_language = st.text_input("Enter source language (e.g., 'Python'):")
|
423 |
+
target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
|
424 |
+
if st.button("Translate Code"):
|
425 |
+
translated_code = translate_code(code_to_translate, source_language, target_language)
|
426 |
+
st.code(translated_code, language=target_language.lower())
|
427 |
+
|
428 |
+
# Code Generation
|
429 |
+
st.subheader("Code Generation")
|
430 |
+
code_idea = st.text_input("Enter your code idea:")
|
431 |
+
if st.button("Generate Code"):
|
432 |
+
generated_code = generate_code(code_idea)
|
433 |
+
st.code(generated_code, language="python")
|
434 |
+
|
435 |
+
elif app_mode == "Workspace Chat App":
|
436 |
+
# Workspace Chat App
|
437 |
+
st.header("Workspace Chat App")
|
438 |
+
|
439 |
+
# Project Workspace Creation
|
440 |
+
st.subheader("Create a New Project")
|
441 |
+
project_name = st.text_input("Enter project name:")
|
442 |
+
if st.button("Create Project"):
|
443 |
+
workspace_status = workspace_interface(project_name)
|
444 |
+
st.success(workspace_status)
|
445 |
+
|
446 |
+
# Add Code to Workspace
|
447 |
+
st.subheader("Add Code to Workspace")
|
448 |
+
code_to_add = st.text_area("Enter code to add to workspace:")
|
449 |
+
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
|
450 |
+
if st.button("Add Code"):
|
451 |
+
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
452 |
+
st.success(add_code_status)
|
453 |
+
|
454 |
+
# Terminal Interface with Project Context
|
455 |
+
st.subheader("Terminal (Workspace Context)")
|
456 |
+
terminal_input = st.text_input("Enter a command within the workspace:")
|
457 |
+
if st.button("Run Command"):
|
458 |
+
terminal_output = terminal_interface(terminal_input, project_name)
|
459 |
+
st.code(terminal_output, language="bash")
|
460 |
+
|
461 |
+
# Chat Interface for Guidance
|
462 |
+
st.subheader("Chat with CodeCraft for Guidance")
|
463 |
+
chat_input = st.text_area("Enter your message for guidance:")
|
464 |
+
if st.button("Get Guidance"):
|
465 |
+
chat_response = chat_interface(chat_input)
|
466 |
+
st.session_state.chat_history.append((chat_input, chat_response))
|
467 |
+
st.write(f"CodeCraft: {chat_response}")
|
468 |
+
|
469 |
+
# Display Chat History
|
470 |
+
st.subheader("Chat History")
|
471 |
+
for user_input, response in st.session_state.chat_history:
|
472 |
+
st.write(f"User: {user_input}")
|
473 |
+
st.write(f"CodeCraft: {response}")
|
474 |
+
|
475 |
+
# Display Terminal History
|
476 |
+
st.subheader("Terminal History")
|
477 |
+
for command, output in st.session_state.terminal_history:
|
478 |
+
st.write(f"Command: {command}")
|
479 |
+
st.code(output, language="bash")
|
480 |
+
|
481 |
+
# Display Projects and Files
|
482 |
+
st.subheader("Workspace Projects")
|
483 |
+
for project, details in st.session_state.workspace_projects.items():
|
484 |
+
st.write(f"Project: {project}")
|
485 |
+
for file in details['files']:
|
486 |
+
st.write(f" - {file}")
|