acecalisto3 commited on
Commit
b0944ea
·
verified ·
1 Parent(s): 6164a6e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +347 -130
app.py CHANGED
@@ -1,15 +1,25 @@
1
  import streamlit as st
2
  import os
3
  import subprocess
4
- import random
5
- import string
6
- from huggingface_hub import cached_download, hf_hub_url
7
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
8
  import black
9
- import pylint
10
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
11
- from transformers import pipeline
12
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  # Define functions for each feature
15
 
@@ -23,22 +33,36 @@ def chat_interface(input_text):
23
  Returns:
24
  The chatbot's response.
25
  """
26
- # Load the appropriate language model from Hugging Face
27
- model_name = 'google/flan-t5-xl' # Choose a suitable model
28
- model_url = hf_hub_url(repo_id=model_name, revision='main', filename='config.json')
29
- model_path = cached_download(model_url)
30
- generator = pipeline('text-generation', model=model_path)
 
 
 
 
 
 
 
 
 
31
 
32
  # Generate chatbot response
33
- response = generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text']
 
 
 
34
  return response
35
 
 
36
  # 2. Terminal
37
- def terminal_interface(command):
38
  """Executes commands in the terminal.
39
 
40
  Args:
41
  command: User's command.
 
42
 
43
  Returns:
44
  The terminal output.
@@ -47,10 +71,18 @@ def terminal_interface(command):
47
  try:
48
  process = subprocess.run(command.split(), capture_output=True, text=True)
49
  output = process.stdout
 
 
 
 
 
 
 
50
  except Exception as e:
51
- output = f'Error: {e}'
52
  return output
53
 
 
54
  # 3. Code Editor
55
  def code_editor_interface(code):
56
  """Provides code completion, formatting, and linting in the code editor.
@@ -69,14 +101,19 @@ def code_editor_interface(code):
69
 
70
  # Lint code using pylint
71
  try:
72
- pylint_output = pylint.run(formatted_code, output=None)
73
- lint_results = pylint_output.linter.stats.get('global_note', 0)
74
- lint_message = f"Pylint score: {lint_results:.2f}"
 
 
 
 
75
  except Exception as e:
76
  lint_message = f"Pylint error: {e}"
77
 
78
  return formatted_code, lint_message
79
 
 
80
  # 4. Workspace
81
  def workspace_interface(project_name):
82
  """Manages projects, files, and resources in the workspace.
@@ -87,14 +124,43 @@ def workspace_interface(project_name):
87
  Returns:
88
  Project creation status.
89
  """
 
90
  # Create project directory
91
  try:
92
- os.makedirs(os.path.join('projects', project_name))
93
- status = f'Project \"{project_name}\" created successfully.'
 
 
 
 
94
  except FileExistsError:
95
- status = f'Project \"{project_name}\" already exists.'
96
  return status
97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
  # 5. AI-Infused Tools
99
 
100
  # Define custom AI-powered tools using Hugging Face models
@@ -109,13 +175,78 @@ def summarize_text(text):
109
  Returns:
110
  Summarized text.
111
  """
112
- summarizer = pipeline('summarization', model='facebook/bart-large-cnn')
113
- summary = summarizer(text, max_length=100, min_length=30)[0]['summary_text']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  return summary
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  # 6. Code Generation
117
  def generate_code(idea):
118
- """Generates code based on a given idea using the bigscience/T0_3B model.
119
 
120
  Args:
121
  idea: The idea for the code to be generated.
@@ -125,9 +256,12 @@ def generate_code(idea):
125
  """
126
 
127
  # Load the code generation model
128
- model_name = 'bigscience/T0_3B' # Choose your model
129
- model = AutoModelForCausalLM.from_pretrained(model_name)
130
- tokenizer = AutoTokenizer.from_pretrained(model_name)
 
 
 
131
 
132
  # Generate the code
133
  input_text = f"""
@@ -151,119 +285,202 @@ def generate_code(idea):
151
 
152
  return generated_code
153
 
154
- # 7. Sentiment Analysis
155
- def analyze_sentiment(text):
156
- """Analyzes the sentiment of a given text.
 
157
 
158
  Args:
159
- text: The text to analyze.
160
 
161
  Returns:
162
- A dictionary containing the sentiment label and score.
163
  """
164
- model_name = 'distilbert-base-uncased-finetuned-sst-3-literal-labels'
165
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
166
- tokenizer = AutoTokenizer.from_pretrained(model_name)
167
- classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
168
- result = classifier(text)[0]
169
- return result
170
 
171
- # 8. Text Translation
172
- def translate_text(text, target_language):
173
- """Translates a given text to the specified target language.
 
174
 
175
- Args:
176
- text: The text to translate.
177
- target_language: The target language code (e.g., 'fr' for French, 'es' for Spanish).
 
178
 
179
- Returns:
180
- The translated text.
181
- """
182
- translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") # Example: English to Spanish
183
- translation = translator(text, target_lang=target_language)[0]['translation_text']
184
- return translation
185
 
186
- # Streamlit App
187
- st.title("CodeCraft: Your AI-Powered Development Toolkit")
188
-
189
- # Workspace Selection
190
- st.sidebar.header("Select Workspace")
191
- project_name = st.sidebar.selectbox("Choose a project", os.listdir('projects'))
192
-
193
- # Chat Interface
194
- st.header("Chat with CodeCraft")
195
- chat_input = st.text_area("Enter your message:")
196
- if st.button("Send"):
197
- chat_response = chat_interface(chat_input)
198
- st.write(f"CodeCraft: {chat_response}")
199
-
200
- # Terminal Interface
201
- st.header("Terminal")
202
- terminal_input = st.text_input("Enter a command:")
203
- if st.button("Run"):
204
- terminal_output = terminal_interface(terminal_input)
205
- st.code(terminal_output, language="bash")
206
-
207
- # Code Editor Interface
208
- st.header("Code Editor")
209
- code_editor = st.text_area("Write your code:", language="python", height=300)
210
- if st.button("Format & Lint"):
211
- formatted_code, lint_message = code_editor_interface(code_editor)
212
- st.code(formatted_code, language="python")
213
- st.info(lint_message)
214
-
215
- # AI-Infused Tools
216
- st.header("AI-Powered Tools")
217
-
218
- # Text Summarization
219
- st.subheader("Text Summarization")
220
- text_to_summarize = st.text_area("Enter text to summarize:")
221
- if st.button("Summarize"):
222
- summary = summarize_text(text_to_summarize)
223
- st.write(f"Summary: {summary}")
224
-
225
- # Sentiment Analysis
226
- st.subheader("Sentiment Analysis")
227
- text_to_analyze = st.text_area("Enter text to analyze sentiment:")
228
- if st.button("Analyze Sentiment"):
229
- sentiment_result = analyze_sentiment(text_to_analyze)
230
- st.write(f"Sentiment: {sentiment_result['label']}, Score: {sentiment_result['score']}")
231
-
232
- # Text Translation
233
- st.subheader("Text Translation")
234
- text_to_translate = st.text_area("Enter text to translate:")
235
- target_language = st.selectbox("Choose target language", ['fr', 'es', 'de', 'zh-CN']) # Example languages
236
- if st.button("Translate"):
237
- translation = translate_text(text_to_translate, target_language)
238
- st.write(f"Translation: {translation}")
239
-
240
- # Code Generation
241
- st.header("Code Generation")
242
- code_idea = st.text_input("Enter your code idea:")
243
- if st.button("Generate Code"):
244
- try:
245
- generated_code = generate_code(code_idea)
246
- st.code(generated_code, language="python")
247
- except Exception as e:
248
- st.error(f"Error generating code: {e}")
249
 
250
- # Launch Chat App (with Authentication)
251
- if st.button("Launch Chat App"):
252
- # Get the current working directory
253
- cwd = os.getcwd()
254
 
255
- # User Authentication
256
- hf_token = st.text_input("Enter your Hugging Face Token:")
257
- if hf_token:
258
- # Set the token using HfFolder
259
- HfFolder.save_token(hf_token)
260
 
261
- # Construct the command to launch the chat app
262
- command = f"cd projects/{project_name} && streamlit run chat_app.py"
263
 
264
- # Execute the command
265
- try:
266
- process = subprocess.run(command.split(), capture_output=True, text=True)
267
- st.write(f"Chat app launched successfully!")
268
- except Exception as e:
269
- st.error(f"Error launching chat app: {e}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import os
3
  import subprocess
 
 
 
4
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
5
  import black
6
+ from pylint import lint
7
+ from io import StringIO
8
+ import openai
9
+ import sys
10
+
11
+ # Set your OpenAI API key here
12
+ openai.api_key = "YOUR_OPENAI_API_KEY"
13
+
14
+ PROJECT_ROOT = "projects"
15
+
16
+ # Global state to manage communication between Tool Box and Workspace Chat App
17
+ if 'chat_history' not in st.session_state:
18
+ st.session_state.chat_history = []
19
+ if 'terminal_history' not in st.session_state:
20
+ st.session_state.terminal_history = []
21
+ if 'workspace_projects' not in st.session_state:
22
+ st.session_state.workspace_projects = {}
23
 
24
  # Define functions for each feature
25
 
 
33
  Returns:
34
  The chatbot's response.
35
  """
36
+ # Load the GPT-2 model which is compatible with AutoModelForCausalLM
37
+ model_name = "gpt2"
38
+ try:
39
+ model = AutoModelForCausalLM.from_pretrained(model_name)
40
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
41
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
42
+ except EnvironmentError as e:
43
+ return f"Error loading model: {e}"
44
+
45
+ # Truncate input text to avoid exceeding the model's maximum length
46
+ max_input_length = 900
47
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
48
+ if input_ids.shape[1] > max_input_length:
49
+ input_ids = input_ids[:, :max_input_length]
50
 
51
  # Generate chatbot response
52
+ outputs = model.generate(
53
+ input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True
54
+ )
55
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
56
  return response
57
 
58
+
59
  # 2. Terminal
60
+ def terminal_interface(command, project_name=None):
61
  """Executes commands in the terminal.
62
 
63
  Args:
64
  command: User's command.
65
+ project_name: Name of the project workspace to add installed packages.
66
 
67
  Returns:
68
  The terminal output.
 
71
  try:
72
  process = subprocess.run(command.split(), capture_output=True, text=True)
73
  output = process.stdout
74
+
75
+ # If the command is to install a package, update the workspace
76
+ if "install" in command and project_name:
77
+ requirements_path = os.path.join(PROJECT_ROOT, project_name, "requirements.txt")
78
+ with open(requirements_path, "a") as req_file:
79
+ package_name = command.split()[-1]
80
+ req_file.write(f"{package_name}\n")
81
  except Exception as e:
82
+ output = f"Error: {e}"
83
  return output
84
 
85
+
86
  # 3. Code Editor
87
  def code_editor_interface(code):
88
  """Provides code completion, formatting, and linting in the code editor.
 
101
 
102
  # Lint code using pylint
103
  try:
104
+ pylint_output = StringIO()
105
+ sys.stdout = pylint_output
106
+ sys.stderr = pylint_output
107
+ lint.Run(['--from-stdin'], stdin=StringIO(formatted_code))
108
+ sys.stdout = sys.__stdout__
109
+ sys.stderr = sys.__stderr__
110
+ lint_message = pylint_output.getvalue()
111
  except Exception as e:
112
  lint_message = f"Pylint error: {e}"
113
 
114
  return formatted_code, lint_message
115
 
116
+
117
  # 4. Workspace
118
  def workspace_interface(project_name):
119
  """Manages projects, files, and resources in the workspace.
 
124
  Returns:
125
  Project creation status.
126
  """
127
+ project_path = os.path.join(PROJECT_ROOT, project_name)
128
  # Create project directory
129
  try:
130
+ os.makedirs(project_path)
131
+ requirements_path = os.path.join(project_path, "requirements.txt")
132
+ with open(requirements_path, "w") as req_file:
133
+ req_file.write("") # Initialize an empty requirements.txt file
134
+ status = f'Project "{project_name}" created successfully.'
135
+ st.session_state.workspace_projects[project_name] = {'files': []}
136
  except FileExistsError:
137
+ status = f'Project "{project_name}" already exists.'
138
  return status
139
 
140
+ def add_code_to_workspace(project_name, code, file_name):
141
+ """Adds selected code files to the workspace.
142
+
143
+ Args:
144
+ project_name: Name of the project.
145
+ code: Code to be added.
146
+ file_name: Name of the file to be created.
147
+
148
+ Returns:
149
+ File creation status.
150
+ """
151
+ project_path = os.path.join(PROJECT_ROOT, project_name)
152
+ file_path = os.path.join(project_path, file_name)
153
+
154
+ try:
155
+ with open(file_path, "w") as code_file:
156
+ code_file.write(code)
157
+ status = f'File "{file_name}" added to project "{project_name}" successfully.'
158
+ st.session_state.workspace_projects[project_name]['files'].append(file_name)
159
+ except Exception as e:
160
+ status = f"Error: {e}"
161
+ return status
162
+
163
+
164
  # 5. AI-Infused Tools
165
 
166
  # Define custom AI-powered tools using Hugging Face models
 
175
  Returns:
176
  Summarized text.
177
  """
178
+ # Load the summarization model
179
+ model_name = "facebook/bart-large-cnn"
180
+ try:
181
+ summarizer = pipeline("summarization", model=model_name)
182
+ except EnvironmentError as e:
183
+ return f"Error loading model: {e}"
184
+
185
+ # Truncate input text to avoid exceeding the model's maximum length
186
+ max_input_length = 1024
187
+ inputs = text
188
+ if len(text) > max_input_length:
189
+ inputs = text[:max_input_length]
190
+
191
+ # Generate summary
192
+ summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][
193
+ "summary_text"
194
+ ]
195
  return summary
196
 
197
+ # Example: Sentiment analysis tool
198
+ def sentiment_analysis(text):
199
+ """Performs sentiment analysis on a given text using a Hugging Face model.
200
+
201
+ Args:
202
+ text: Text to be analyzed.
203
+
204
+ Returns:
205
+ Sentiment analysis result.
206
+ """
207
+ # Load the sentiment analysis model
208
+ model_name = "distilbert-base-uncased-finetuned-sst-2-english"
209
+ try:
210
+ analyzer = pipeline("sentiment-analysis", model=model_name)
211
+ except EnvironmentError as e:
212
+ return f"Error loading model: {e}"
213
+
214
+ # Perform sentiment analysis
215
+ result = analyzer(text)[0]
216
+ return result
217
+
218
+ # Example: Text translation tool (code translation)
219
+ def translate_code(code, source_language, target_language):
220
+ """Translates code from one programming language to another using OpenAI Codex.
221
+
222
+ Args:
223
+ code: Code to be translated.
224
+ source_language: The source programming language.
225
+ target_language: The target programming language.
226
+
227
+ Returns:
228
+ Translated code.
229
+ """
230
+ prompt = f"Translate the following {source_language} code to {target_language}:\n\n{code}"
231
+ try:
232
+ response = openai.Completion.create(
233
+ engine="code-davinci-002",
234
+ prompt=prompt,
235
+ max_tokens=1024,
236
+ temperature=0.3,
237
+ top_p=1,
238
+ n=1,
239
+ stop=None
240
+ )
241
+ translated_code = response.choices[0].text.strip()
242
+ except Exception as e:
243
+ translated_code = f"Error: {e}"
244
+ return translated_code
245
+
246
+
247
  # 6. Code Generation
248
  def generate_code(idea):
249
+ """Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model.
250
 
251
  Args:
252
  idea: The idea for the code to be generated.
 
256
  """
257
 
258
  # Load the code generation model
259
+ model_name = "EleutherAI/gpt-neo-2.7B"
260
+ try:
261
+ model = AutoModelForCausalLM.from_pretrained(model_name)
262
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
263
+ except EnvironmentError as e:
264
+ return f"Error loading model: {e}"
265
 
266
  # Generate the code
267
  input_text = f"""
 
285
 
286
  return generated_code
287
 
288
+
289
+ # 7. AI Personas Creator
290
+ def create_persona_from_text(text):
291
+ """Creates an AI persona from the given text.
292
 
293
  Args:
294
+ text: Text to be used for creating the persona.
295
 
296
  Returns:
297
+ Persona prompt.
298
  """
299
+ persona_prompt = f"""
300
+ As an elite expert developer with the highest level of proficiency in Streamlit, Gradio, and Hugging Face, I possess a comprehensive understanding of these technologies and their applications in web development and deployment. My expertise encompasses the following areas:
 
 
 
 
301
 
302
+ Streamlit:
303
+ * In-depth knowledge of Streamlit's architecture, components, and customization options.
304
+ * Expertise in creating interactive and user-friendly dashboards and applications.
305
+ * Proficiency in integrating Streamlit with various data sources and machine learning models.
306
 
307
+ Gradio:
308
+ * Thorough understanding of Gradio's capabilities for building and deploying machine learning interfaces.
309
+ * Expertise in creating custom Gradio components and integrating them with Streamlit applications.
310
+ * Proficiency in using Gradio to deploy models from Hugging Face and other frameworks.
311
 
312
+ Hugging Face:
313
+ * Comprehensive knowledge of Hugging Face's model hub and Transformers library.
314
+ * Expertise in fine-tuning and deploying Hugging Face models for various NLP and computer vision tasks.
315
+ * Proficiency in using Hugging Face's Spaces platform for model deployment and sharing.
 
 
316
 
317
+ Deployment:
318
+ * In-depth understanding of best practices for deploying Streamlit and Gradio applications.
319
+ * Expertise in deploying models on cloud platforms such as AWS, Azure, and GCP.
320
+ * Proficiency in optimizing deployment configurations for performance and scalability.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321
 
322
+ Additional Skills:
323
+ * Strong programming skills in Python and JavaScript.
324
+ * Familiarity with Docker and containerization technologies.
325
+ * Excellent communication and problem-solving abilities.
326
 
327
+ I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications using Streamlit, Gradio, and Hugging Face. Please feel free to ask any questions or present any challenges you may encounter.
 
 
 
 
328
 
329
+ Example:
 
330
 
331
+ Task:
332
+ Develop a Streamlit application that allows users to generate text using a Hugging Face model. The application should include a Gradio component for user input and model prediction.
333
+
334
+ Solution:
335
+
336
+ import streamlit as st
337
+ import gradio as gr
338
+ from transformers import pipeline
339
+
340
+ # Create a Hugging Face pipeline
341
+ huggingface_model = pipeline("text-generation")
342
+
343
+ # Create a Streamlit app
344
+ st.title("Hugging Face Text Generation App")
345
+
346
+ # Define a Gradio component
347
+ demo = gr.Interface(
348
+ fn=huggingface_model,
349
+ inputs=gr.Textbox(lines=2),
350
+ outputs=gr.Textbox(lines=1),
351
+ )
352
+
353
+ # Display the Gradio component in the Streamlit app
354
+ st.write(demo)
355
+ """
356
+ return persona_prompt
357
+
358
+
359
+ # Streamlit App
360
+ st.title("AI Personas Creator")
361
+
362
+ # Sidebar navigation
363
+ st.sidebar.title("Navigation")
364
+ app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Personas Creator", "Tool Box", "Workspace Chat App"])
365
+
366
+ if app_mode == "AI Personas Creator":
367
+ # AI Personas Creator
368
+ st.header("Create the System Prompt of an AI Persona from YouTube or Text")
369
+
370
+ st.subheader("From Text")
371
+ text_input = st.text_area("Enter text to create an AI persona:")
372
+ if st.button("Create Persona"):
373
+ persona_prompt = create_persona_from_text(text_input)
374
+ st.subheader("Persona Prompt")
375
+ st.text_area("You may now copy the text below and use it as Custom prompt!", value=persona_prompt, height=300)
376
+
377
+ elif app_mode == "Tool Box":
378
+ # Tool Box
379
+ st.header("AI-Powered Tools")
380
+
381
+ # Chat Interface
382
+ st.subheader("Chat with CodeCraft")
383
+ chat_input = st.text_area("Enter your message:")
384
+ if st.button("Send"):
385
+ chat_response = chat_interface(chat_input)
386
+ st.session_state.chat_history.append((chat_input, chat_response))
387
+ st.write(f"CodeCraft: {chat_response}")
388
+
389
+ # Terminal Interface
390
+ st.subheader("Terminal")
391
+ terminal_input = st.text_input("Enter a command:")
392
+ if st.button("Run"):
393
+ terminal_output = terminal_interface(terminal_input)
394
+ st.session_state.terminal_history.append((terminal_input, terminal_output))
395
+ st.code(terminal_output, language="bash")
396
+
397
+ # Code Editor Interface
398
+ st.subheader("Code Editor")
399
+ code_editor = st.text_area("Write your code:", height=300)
400
+ if st.button("Format & Lint"):
401
+ formatted_code, lint_message = code_editor_interface(code_editor)
402
+ st.code(formatted_code, language="python")
403
+ st.info(lint_message)
404
+
405
+ # Text Summarization Tool
406
+ st.subheader("Summarize Text")
407
+ text_to_summarize = st.text_area("Enter text to summarize:")
408
+ if st.button("Summarize"):
409
+ summary = summarize_text(text_to_summarize)
410
+ st.write(f"Summary: {summary}")
411
+
412
+ # Sentiment Analysis Tool
413
+ st.subheader("Sentiment Analysis")
414
+ sentiment_text = st.text_area("Enter text for sentiment analysis:")
415
+ if st.button("Analyze Sentiment"):
416
+ sentiment = sentiment_analysis(sentiment_text)
417
+ st.write(f"Sentiment: {sentiment}")
418
+
419
+ # Text Translation Tool (Code Translation)
420
+ st.subheader("Translate Code")
421
+ code_to_translate = st.text_area("Enter code to translate:")
422
+ source_language = st.text_input("Enter source language (e.g., 'Python'):")
423
+ target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
424
+ if st.button("Translate Code"):
425
+ translated_code = translate_code(code_to_translate, source_language, target_language)
426
+ st.code(translated_code, language=target_language.lower())
427
+
428
+ # Code Generation
429
+ st.subheader("Code Generation")
430
+ code_idea = st.text_input("Enter your code idea:")
431
+ if st.button("Generate Code"):
432
+ generated_code = generate_code(code_idea)
433
+ st.code(generated_code, language="python")
434
+
435
+ elif app_mode == "Workspace Chat App":
436
+ # Workspace Chat App
437
+ st.header("Workspace Chat App")
438
+
439
+ # Project Workspace Creation
440
+ st.subheader("Create a New Project")
441
+ project_name = st.text_input("Enter project name:")
442
+ if st.button("Create Project"):
443
+ workspace_status = workspace_interface(project_name)
444
+ st.success(workspace_status)
445
+
446
+ # Add Code to Workspace
447
+ st.subheader("Add Code to Workspace")
448
+ code_to_add = st.text_area("Enter code to add to workspace:")
449
+ file_name = st.text_input("Enter file name (e.g., 'app.py'):")
450
+ if st.button("Add Code"):
451
+ add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
452
+ st.success(add_code_status)
453
+
454
+ # Terminal Interface with Project Context
455
+ st.subheader("Terminal (Workspace Context)")
456
+ terminal_input = st.text_input("Enter a command within the workspace:")
457
+ if st.button("Run Command"):
458
+ terminal_output = terminal_interface(terminal_input, project_name)
459
+ st.code(terminal_output, language="bash")
460
+
461
+ # Chat Interface for Guidance
462
+ st.subheader("Chat with CodeCraft for Guidance")
463
+ chat_input = st.text_area("Enter your message for guidance:")
464
+ if st.button("Get Guidance"):
465
+ chat_response = chat_interface(chat_input)
466
+ st.session_state.chat_history.append((chat_input, chat_response))
467
+ st.write(f"CodeCraft: {chat_response}")
468
+
469
+ # Display Chat History
470
+ st.subheader("Chat History")
471
+ for user_input, response in st.session_state.chat_history:
472
+ st.write(f"User: {user_input}")
473
+ st.write(f"CodeCraft: {response}")
474
+
475
+ # Display Terminal History
476
+ st.subheader("Terminal History")
477
+ for command, output in st.session_state.terminal_history:
478
+ st.write(f"Command: {command}")
479
+ st.code(output, language="bash")
480
+
481
+ # Display Projects and Files
482
+ st.subheader("Workspace Projects")
483
+ for project, details in st.session_state.workspace_projects.items():
484
+ st.write(f"Project: {project}")
485
+ for file in details['files']:
486
+ st.write(f" - {file}")