Spaces:
Sleeping
Sleeping
acecalisto3
commited on
Commit
•
cb052d2
1
Parent(s):
2efafeb
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,29 @@ import os
|
|
2 |
import subprocess
|
3 |
import streamlit as st
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
-
import
|
6 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from io import StringIO
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
10 |
PROJECT_ROOT = "projects"
|
11 |
AGENT_DIRECTORY = "agents"
|
@@ -25,387 +44,269 @@ if 'current_state' not in st.session_state:
|
|
25 |
'workspace_chat': {}
|
26 |
}
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
"""
|
48 |
-
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
49 |
-
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
50 |
-
|
51 |
-
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
52 |
-
|
53 |
-
return summary, next_step
|
54 |
-
|
55 |
-
def save_agent_to_file(agent):
|
56 |
-
"""Saves the agent's prompt to a file locally and then commits to the Hugging Face repository."""
|
57 |
-
if not os.path.exists(AGENT_DIRECTORY):
|
58 |
-
os.makedirs(AGENT_DIRECTORY)
|
59 |
-
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
60 |
-
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
|
61 |
-
with open(file_path, "w") as file:
|
62 |
-
file.write(agent.create_agent_prompt())
|
63 |
-
with open(config_path, "w") as file:
|
64 |
-
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
|
65 |
-
st.session_state.available_agents.append(agent.name)
|
66 |
-
|
67 |
-
commit_and_push_changes(f"Add agent {agent.name}")
|
68 |
-
|
69 |
-
def load_agent_prompt(agent_name):
|
70 |
-
"""Loads an agent prompt from a file."""
|
71 |
-
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
72 |
-
if os.path.exists(file_path):
|
73 |
-
with open(file_path, "r") as file:
|
74 |
-
agent_prompt = file.read()
|
75 |
-
return agent_prompt
|
76 |
else:
|
77 |
-
return
|
78 |
-
|
79 |
-
def
|
80 |
-
|
81 |
-
agent = AIAgent(name, "AI agent created from text input.", skills)
|
82 |
-
save_agent_to_file(agent)
|
83 |
-
return agent.create_agent_prompt()
|
84 |
-
|
85 |
-
# Chat interface using a selected agent
|
86 |
-
def chat_interface_with_agent(input_text, agent_name):
|
87 |
-
agent_prompt = load_agent_prompt(agent_name)
|
88 |
-
if agent_prompt is None:
|
89 |
-
return f"Agent {agent_name} not found."
|
90 |
-
|
91 |
-
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
|
92 |
-
model_name = "gpt2"
|
93 |
try:
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
input_ids = input_ids[:, :max_input_length]
|
108 |
-
|
109 |
-
# Generate chatbot response
|
110 |
-
outputs = model.generate(
|
111 |
-
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
112 |
-
)
|
113 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
114 |
-
return response
|
115 |
-
|
116 |
-
def workspace_interface(project_name):
|
117 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
118 |
-
if not os.path.exists(PROJECT_ROOT):
|
119 |
-
os.makedirs(PROJECT_ROOT)
|
120 |
-
if not os.path.exists(project_path):
|
121 |
-
os.makedirs(project_path)
|
122 |
-
st.session_state.workspace_projects[project_name] = {"files": []}
|
123 |
-
st.session_state.current_state['workspace_chat']['project_name'] = project_name
|
124 |
-
commit_and_push_changes(f"Create project {project_name}")
|
125 |
-
return f"Project {project_name} created successfully."
|
126 |
-
else:
|
127 |
-
return f"Project {project_name} already exists."
|
128 |
-
|
129 |
-
def add_code_to_workspace(project_name, code, file_name):
|
130 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
131 |
-
if os.path.exists(project_path):
|
132 |
-
file_path = os.path.join(project_path, file_name)
|
133 |
-
with open(file_path, "w") as file:
|
134 |
-
file.write(code)
|
135 |
-
st.session_state.workspace_projects[project_name]["files"].append(file_name)
|
136 |
-
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
|
137 |
-
commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
|
138 |
-
return f"Code added to {file_name} in project {project_name} successfully."
|
139 |
-
else:
|
140 |
-
return f"Project {project_name} does not exist."
|
141 |
-
|
142 |
-
def terminal_interface(command, project_name=None):
|
143 |
-
if project_name:
|
144 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
145 |
-
if not os.path.exists(project_path):
|
146 |
-
return f"Project {project_name} does not exist."
|
147 |
-
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
|
148 |
-
else:
|
149 |
-
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
150 |
-
if result.returncode == 0:
|
151 |
-
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
|
152 |
-
return result.stdout
|
153 |
-
else:
|
154 |
-
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
|
155 |
-
return result.stderr
|
156 |
-
|
157 |
-
def summarize_text(text):
|
158 |
-
summarizer = pipeline("summarization")
|
159 |
-
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
|
160 |
-
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
|
161 |
-
return summary[0]['summary_text']
|
162 |
-
|
163 |
-
def sentiment_analysis(text):
|
164 |
-
analyzer = pipeline("sentiment-analysis")
|
165 |
-
sentiment = analyzer(text)
|
166 |
-
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
|
167 |
-
return sentiment[0]
|
168 |
-
|
169 |
-
# ... [rest of the translate_code function, but remove the OpenAI API call and replace it with your own logic] ...
|
170 |
-
|
171 |
-
def generate_code(code_idea):
|
172 |
-
# Replace this with a call to a Hugging Face model or your own logic
|
173 |
-
# For example, using a text-generation pipeline:
|
174 |
-
generator = pipeline('text-generation', model='gpt4o')
|
175 |
-
generated_code = generator(code_idea, max_length=10000, num_return_sequences=1)[0]['generated_text']
|
176 |
-
messages=[
|
177 |
-
{"role": "system", "content": "You are an expert software developer."},
|
178 |
-
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
|
179 |
-
]
|
180 |
-
st.session_state.current_state['toolbox']['generated_code'] = generated_code
|
181 |
-
|
182 |
-
return generated_code
|
183 |
-
|
184 |
-
def translate_code(code, input_language, output_language):
|
185 |
-
# Define a dictionary to map programming languages to their corresponding file extensions
|
186 |
-
language_extensions = {
|
187 |
-
|
188 |
-
}
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
]
|
208 |
-
)
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
st.session_state.current_state['toolbox']['translated_code'] = translated_code
|
214 |
-
return translated_code
|
215 |
-
|
216 |
-
def generate_code(code_idea):
|
217 |
-
response = openai.ChatCompletion.create(
|
218 |
-
model="gpt-4",
|
219 |
-
messages=[
|
220 |
-
{"role": "system", "content": "You are an expert software developer."},
|
221 |
-
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
|
222 |
]
|
223 |
-
)
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
227 |
|
228 |
-
def
|
229 |
-
"""
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
]
|
235 |
-
for command in commands:
|
236 |
-
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
237 |
-
if result.returncode != 0:
|
238 |
-
st.error(f"Error executing command '{command}': {result.stderr}")
|
239 |
-
break
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
else:
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
#
|
317 |
-
st.
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
st.
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
st.
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
st.write(f"User: {user_input}")
|
375 |
-
st.write(f"CodeCraft: {response}")
|
376 |
-
|
377 |
-
# Display Terminal History
|
378 |
-
st.subheader("Terminal History")
|
379 |
-
for command, output in st.session_state.terminal_history:
|
380 |
-
st.write(f"Command: {command}")
|
381 |
-
st.code(output, language="bash")
|
382 |
-
|
383 |
-
# Display Projects and Files
|
384 |
-
st.subheader("Workspace Projects")
|
385 |
-
for project, details in st.session_state.workspace_projects.items():
|
386 |
-
st.write(f"Project: {project}")
|
387 |
-
for file in details['files']:
|
388 |
-
st.write(f" - {file}")
|
389 |
-
|
390 |
-
# Chat with AI Agents
|
391 |
-
st.subheader("Chat with AI Agents")
|
392 |
-
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
|
393 |
-
agent_chat_input = st.text_area("Enter your message for the agent:")
|
394 |
-
if st.button("Send to Agent"):
|
395 |
-
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
|
396 |
-
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
|
397 |
-
st.write(f"{selected_agent}: {agent_chat_response}")
|
398 |
-
|
399 |
-
# Automate Build Process
|
400 |
-
st.subheader("Automate Build Process")
|
401 |
-
if st.button("Automate"):
|
402 |
-
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
403 |
-
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
|
404 |
-
st.write("Autonomous Build Summary:")
|
405 |
-
st.write(summary)
|
406 |
-
st.write("Next Step:")
|
407 |
-
st.write(next_step)
|
408 |
-
|
409 |
-
# Display current state for debugging
|
410 |
-
st.sidebar.subheader("Current State")
|
411 |
-
st.sidebar.json(st.session_state.current_state)
|
|
|
2 |
import subprocess
|
3 |
import streamlit as st
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
+
from langchain_community.llms import HuggingFaceHub
|
6 |
+
from langchain_community.embeddings import HuggingFaceHubEmbeddings
|
7 |
+
from langchain_community.document_loaders import PyPDFLoader
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain.chains import ConversationalRetrievalChain
|
10 |
+
from langchain.chains.question_answering import load_qa_chain
|
11 |
+
from llama_cpp import Llama, LlamaCppPythonProvider, LlamaCppAgent
|
12 |
+
from llama_cpp.llama_cpp_agent import get_messages_formatter_type, get_context_by_model
|
13 |
from io import StringIO
|
14 |
+
import tempfile
|
15 |
+
|
16 |
+
# --- Global Variables ---
|
17 |
+
CURRENT_PROJECT = {} # Store project data (code, packages, etc.)
|
18 |
+
MODEL_OPTIONS = {
|
19 |
+
"CodeQwen": "Qwen/CodeQwen1.5-7B-Chat-GGUF",
|
20 |
+
"Codestral": "bartowski/Codestral-22B-v0.1-GGUF",
|
21 |
+
"AutoCoder": "bartowski/AutoCoder-GGUF",
|
22 |
+
}
|
23 |
+
MODEL_FILENAMES = {
|
24 |
+
"CodeQwen": "codeqwen-1_5-7b-chat-q6_k.gguf",
|
25 |
+
"Codestral": "Codestral-22B-v0.1-Q6_K.gguf",
|
26 |
+
"AutoCoder": "AutoCoder-Q6_K.gguf",
|
27 |
+
}
|
28 |
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
29 |
PROJECT_ROOT = "projects"
|
30 |
AGENT_DIRECTORY = "agents"
|
|
|
44 |
'workspace_chat': {}
|
45 |
}
|
46 |
|
47 |
+
# --- Load NLP Pipelines ---
|
48 |
+
classifier = pipeline("text-classification", model="facebook/bart-large-mnli")
|
49 |
+
|
50 |
+
# --- Load the model and tokenizer ---
|
51 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", use_auth_token=os.environ.get("huggingface_token"))
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", use_auth_token=os.environ.get("huggingface_token"))
|
53 |
+
|
54 |
+
# --- Utility Functions ---
|
55 |
+
def install_and_import(package_name):
|
56 |
+
"""Installs a package using pip and imports it."""
|
57 |
+
subprocess.check_call(["pip", "install", package_name])
|
58 |
+
return importlib.import_module(package_name)
|
59 |
+
|
60 |
+
def extract_package_name(input_str):
|
61 |
+
"""Extracts the package name from a PyPI URL or pip command."""
|
62 |
+
if input_str.startswith("https://pypi.org/project/"):
|
63 |
+
return input_str.split("/")[-2]
|
64 |
+
elif input_str.startswith("pip install "):
|
65 |
+
return input_str.split(" ")[2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
else:
|
67 |
+
return input_str
|
68 |
+
|
69 |
+
def create_interface_from_input(input_str):
|
70 |
+
"""Creates a Gradio interface with buttons for functions from a package."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
try:
|
72 |
+
package_name = extract_package_name(input_str)
|
73 |
+
module = install_and_import(package_name)
|
74 |
+
|
75 |
+
# Handle Flask application context if needed
|
76 |
+
if 'flask' in sys.modules or 'flask_restful' in sys.modules:
|
77 |
+
app = Flask(__name__)
|
78 |
+
with app.app_context():
|
79 |
+
functions = [getattr(module, name) for name in dir(module) if callable(getattr(module, name))]
|
80 |
+
else:
|
81 |
+
functions = [getattr(module, name) for name in dir(module) if callable(getattr(module, name))]
|
82 |
+
|
83 |
+
function_list = [(func.__name__, func) for func in functions if not func.__name__.startswith("_")]
|
84 |
+
return function_list, f"Interface for `{package_name}` created."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
except Exception as e:
|
87 |
+
return [], str(e)
|
88 |
+
|
89 |
+
def execute_pip_command(command, add_message):
|
90 |
+
"""Executes a pip command and streams the output."""
|
91 |
+
process = subprocess.Popen(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
92 |
+
while True:
|
93 |
+
output = process.stdout.readline()
|
94 |
+
if output == '' and process.poll() is not None:
|
95 |
+
break
|
96 |
+
if output:
|
97 |
+
add_message("System", f"
|
98 |
+
|
99 |
+
|
100 |
+
\n{output.strip()}\n
|
101 |
+
|
102 |
+
time.sleep(0.1) # Simulate delay for more realistic streaming
|
103 |
+
rc = process.poll()
|
104 |
+
return rc
|
105 |
+
|
106 |
+
def generate_text(input_text):
|
107 |
+
"""Generates text using the loaded language model."""
|
108 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
109 |
+
output = model.generate(**inputs, max_length=500, num_return_sequences=1)
|
110 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
111 |
+
|
112 |
+
# --- AI Agent Functions ---
|
113 |
+
def analyze_user_intent(user_input):
|
114 |
+
"""Classifies the user's intent based on their input."""
|
115 |
+
classification = classifier(user_input)
|
116 |
+
return classification[0]['label']
|
117 |
+
|
118 |
+
def generate_mini_app_ideas(theme):
|
119 |
+
"""Generates mini-app ideas based on the user's theme."""
|
120 |
+
if theme.lower() == "productivity":
|
121 |
+
return [
|
122 |
+
"Idea-to-Codebase Generator",
|
123 |
+
"Automated GitHub Repo Manager",
|
124 |
+
"AI-Powered IDE"
|
125 |
]
|
126 |
+
elif theme.lower() == "creativity":
|
127 |
+
return [
|
128 |
+
"Brainstorming Assistant",
|
129 |
+
"Mood Board Generator",
|
130 |
+
"Writing Assistant"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
]
|
132 |
+
elif theme.lower() == "well-being":
|
133 |
+
return [
|
134 |
+
"Meditation Guide",
|
135 |
+
"Mood Tracker",
|
136 |
+
"Sleep Tracker"
|
137 |
+
]
|
138 |
+
else:
|
139 |
+
return ["No matching mini-apps found. Try a different theme."]
|
140 |
|
141 |
+
def generate_app_code(app_name, app_description, model_name, history):
|
142 |
+
"""Generates code for the selected mini-app using the specified GGUF model."""
|
143 |
+
prompt = f"Write a Python script for a {app_description} named {app_name} using Gradio and Streamlit:"
|
144 |
+
agent = get_agent(model_name)
|
145 |
+
generated_code = agent.chat(prompt, history)
|
146 |
+
return generated_code
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
def execute_terminal_command(command):
|
149 |
+
"""Executes a terminal command and returns the output."""
|
150 |
+
try:
|
151 |
+
result = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT, universal_newlines=True)
|
152 |
+
return result.strip(), None
|
153 |
+
except subprocess.CalledProcessError as e:
|
154 |
+
return e.output.strip(), str(e)
|
155 |
+
|
156 |
+
def install_package(package_name):
|
157 |
+
"""Installs a package using pip."""
|
158 |
+
output, error = execute_terminal_command(f"pip install {package_name}")
|
159 |
+
if error:
|
160 |
+
return f"Error installing package: {error}"
|
161 |
+
else:
|
162 |
+
return f"Package `{package_name}` installed successfully."
|
163 |
+
|
164 |
+
def get_project_data():
|
165 |
+
"""Returns the current project data."""
|
166 |
+
return CURRENT_PROJECT
|
167 |
+
|
168 |
+
def update_project_data(key, value):
|
169 |
+
"""Updates the project data."""
|
170 |
+
CURRENT_PROJECT[key] = value
|
171 |
+
|
172 |
+
def handle_chat(input_text, history):
|
173 |
+
"""Handles user input in the chat interface."""
|
174 |
+
def add_message(sender, message):
|
175 |
+
history.append((sender, message))
|
176 |
+
|
177 |
+
add_message("User", input_text)
|
178 |
+
|
179 |
+
if input_text.startswith("pip install ") or input_text.startswith("https://pypi.org/project/"):
|
180 |
+
package_name = extract_package_name(input_text)
|
181 |
+
add_message("System", f"Installing `{package_name}`...")
|
182 |
+
result = install_package(package_name)
|
183 |
+
add_message("System", result)
|
184 |
+
update_project_data("packages", CURRENT_PROJECT.get("packages", []) + [package_name])
|
185 |
+
return history, dynamic_functions
|
186 |
+
|
187 |
+
# --- AI Agent Interaction ---
|
188 |
+
if USER_INTENT is None:
|
189 |
+
add_message("System", analyze_user_intent(input_text))
|
190 |
+
add_message("System", "What kind of mini-app do you have in mind?")
|
191 |
+
elif not MINI_APPS:
|
192 |
+
add_message("System", "Here are some ideas:")
|
193 |
+
for idea in generate_mini_app_ideas(input_text):
|
194 |
+
add_message("System", f"- {idea}")
|
195 |
+
add_message("System", "Which one would you like to build?")
|
196 |
+
elif CURRENT_APP["name"] is None:
|
197 |
+
selected_app = input_text
|
198 |
+
app_description = next((app for app in MINI_APPS if selected_app in app), None)
|
199 |
+
if app_description:
|
200 |
+
add_message("System", f"Generating code for {app_description}...")
|
201 |
+
code = generate_app_code(selected_app, app_description, "CodeQwen", history) # Use CodeQwen by default
|
202 |
+
add_message("System", f"
|
203 |
+
|
204 |
+
|
205 |
+
python\n{code}\n
|
206 |
+
|
207 |
+
add_message("System", "Code generated! What else can I do for you?")
|
208 |
+
update_project_data("code", code)
|
209 |
+
update_project_data("app_name", selected_app)
|
210 |
+
update_project_data("app_description", app_description)
|
211 |
else:
|
212 |
+
add_message("System", "Please choose from the provided mini-app ideas.")
|
213 |
+
else:
|
214 |
+
add_message("System", "You already have an app in progress. Do you want to start over?")
|
215 |
+
|
216 |
+
return history, dynamic_functions
|
217 |
+
|
218 |
+
# --- Prebuilt Tools ---
|
219 |
+
def generate_code_tool(input_text, history):
|
220 |
+
"""Prebuilt tool for code generation."""
|
221 |
+
code = generate_app_code("MyTool", "A tool to do something", "CodeQwen", history) # Use CodeQwen by default
|
222 |
+
return f"
|
223 |
+
|
224 |
+
|
225 |
+
python\n{code}\n
|
226 |
+
|
227 |
+
def analyze_code_tool(input_text, history):
|
228 |
+
"""Prebuilt tool for code analysis."""
|
229 |
+
agent = get_agent("Codestral")
|
230 |
+
analysis = agent.chat(input_text, history)
|
231 |
+
return analysis
|
232 |
+
|
233 |
+
# --- Streamlit Interface ---
|
234 |
+
st.title("AI4ME: Your Personal AI App Workshop")
|
235 |
+
st.markdown("## Let's build your dream app together! 🤖")
|
236 |
+
|
237 |
+
# --- Hugging Face Token Input ---
|
238 |
+
huggingface_token = st.text_input("Enter your Hugging Face Token", type="password", key="huggingface_token")
|
239 |
+
os.environ["huggingface_token"] = huggingface_token
|
240 |
+
|
241 |
+
# --- Chat Interface ---
|
242 |
+
chat_history = []
|
243 |
+
chat_input = st.text_input("Tell me your idea...", key="chat_input")
|
244 |
+
if chat_input:
|
245 |
+
chat_history, dynamic_functions = handle_chat(chat_input, chat_history)
|
246 |
+
for sender, message in chat_history:
|
247 |
+
st.markdown(f"**{sender}:** {message}")
|
248 |
+
|
249 |
+
# --- Code Execution and Deployment ---
|
250 |
+
if CURRENT_APP["code"]:
|
251 |
+
st.markdown("## Your App Code:")
|
252 |
+
code_area = st.text_area("Your App Code", value=CURRENT_APP["code"], key="code_area")
|
253 |
+
|
254 |
+
st.markdown("## Deploy Your App (Coming Soon!)")
|
255 |
+
# Add deployment functionality here using Streamlit's deployment features.
|
256 |
+
# For example, you could use Streamlit's `st.button` to trigger deployment.
|
257 |
+
|
258 |
+
# --- Code Execution ---
|
259 |
+
st.markdown("## Run Your App:")
|
260 |
+
if st.button("Execute Code"):
|
261 |
+
try:
|
262 |
+
# Use Hugging Face's text-generation pipeline for code execution
|
263 |
+
inputs = tokenizer(code_area, return_tensors="pt")
|
264 |
+
output = model.generate(**inputs, max_length=500, num_return_sequences=1)
|
265 |
+
output = tokenizer.decode(output[0], skip_special_tokens=True)
|
266 |
+
st.success(f"Code executed successfully!\n{output}")
|
267 |
+
except Exception as e:
|
268 |
+
st.error(f"Error executing code: {e}")
|
269 |
+
|
270 |
+
# --- Code Editing ---
|
271 |
+
st.markdown("## Edit Your Code:")
|
272 |
+
if st.button("Edit Code"):
|
273 |
+
try:
|
274 |
+
# Use Hugging Face's text-generation pipeline for code editing
|
275 |
+
prompt = f"Improve the following Python code:\n
|
276 |
+
|
277 |
+
|
278 |
+
python\n{code_area}\n
|
279 |
+
|
280 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
281 |
+
output = model.generate(**inputs, max_length=500, num_return_sequences=1)
|
282 |
+
edited_code = tokenizer.decode(output[0], skip_special_tokens=True).split("
|
283 |
+
|
284 |
+
|
285 |
+
python\n")[1].split("\n
|
286 |
+
|
287 |
+
st.success(f"Code edited successfully!\n{edited_code}")
|
288 |
+
update_project_data("code", edited_code)
|
289 |
+
code_area.value = edited_code
|
290 |
+
except Exception as e:
|
291 |
+
st.error(f"Error editing code: {e}")
|
292 |
+
|
293 |
+
# --- Prebuilt Tools ---
|
294 |
+
st.markdown("## Prebuilt Tools:")
|
295 |
+
with st.expander("Generate Code"):
|
296 |
+
code_input = st.text_area("Enter your code request:", key="code_input")
|
297 |
+
if st.button("Generate"):
|
298 |
+
code_output = generate_code_tool(code_input, chat_history)
|
299 |
+
st.markdown(code_output)
|
300 |
+
|
301 |
+
with st.expander("Analyze Code"):
|
302 |
+
code_input = st.text_area("Enter your code:", key="analyze_code_input")
|
303 |
+
if st.button("Analyze"):
|
304 |
+
analysis_output = analyze_code_tool(code_input, chat_history)
|
305 |
+
st.markdown(analysis_output)
|
306 |
+
|
307 |
+
# --- Additional Features ---
|
308 |
+
# Add features like:
|
309 |
+
# - Code editing
|
310 |
+
# - Integration with external APIs
|
311 |
+
# - Advanced AI agents for more complex tasks
|
312 |
+
# - User account management
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|