import os import streamlit as st import subprocess from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM import black from pylint import lint import sys import torch from huggingface_hub import hf_hub_url, cached_download, HfApi import base64 # Set your Hugging Face API key here # hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token # Get Hugging Face token from secrets.toml - this line should already be in the main code hf_token = st.secrets["huggingface"]["hf_token"] HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit" PROJECT_ROOT = "projects" return refined_response class AIAgent: def __init__(self, name, description, skills, hf_api=None): self.name = name self.description = description self.skills = skills self._hf_api = hf_api self._hf_token = hf_token # Store the token here @property def hf_api(self): if not self._hf_api and self.has_valid_hf_token(): self._hf_api = HfApi(token=self._hf_token) return self._hf_api def has_valid_hf_token(self): return bool(self._hf_token) async def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token): self._hf_token = hf_token # Continuation of previous methods summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()]) st.error(f"Build Error: {e}") return summary, next_step def deploy_built_space_to_hf(self): if not self._hf_api or not self._hf_token: raise ValueError("Cannot deploy the Space since no valid Hugoging Face API connection was established.") # Assuming you have a function to get the files for your Space repository_name = f"my-awesome-space_{datetime.now().timestamp()}" files = get_built_space_files() # Placeholder - you'll need to define this function # Create the Space create_space(self.hf_api, repository_name, "Description", True, files) st.markdown("## Congratulations! Successfully deployed Space 🚀 ##") st.markdown(f"[Check out your new Space here](https://huggingface.co/spaces/{repository_name})") # Add any missing functions from your original code (e.g., get_built_space_files) def get_built_space_files(): # Replace with your logic to gather the files you want to deploy return { "app.py": "# Your Streamlit app code here", "requirements.txt": "streamlit\ntransformers" # Add other files as needed } def save_agent_to_file(agent): """Saves the agent's prompt to a file.""" st.session_state.workspace_projects[project_name]['files'].append(file_name) return f"Code added to '{file_name}' in project '{project_name}'." def create_space(api, name, description, public, files, entrypoint="launch.py"): url = f"{hf_hub_url()}spaces/{name}/prepare-repo" headers = {"Authorization": f"Bearer {api.access_token}"} payload = { "public": public, "gitignore_template": "web", "default_branch": "main", "archived": False, "files": [] } for filename, contents in files.items(): data = { "content": contents, "path": filename, "encoding": "utf-8", "mode": "overwrite" if "#\{random.randint(0, 1)\}" not in contents else "merge", } payload["files"].append(data) response = requests.post(url, json=payload, headers=headers) response.raise_for_status() location = response.headers.get("Location") # wait_for_processing(location, api) # You might need to implement this if it's not already defined return Repository(name=name, api=api) # Streamlit App st.title("AI Agent Creator") elif app_mode == "Workspace Chat App": # Workspace Chat App st.header("Workspace Chat App") def get_built_space_files(): """ Gathers the necessary files for the Hugging Face Space, handling different project structures and file types. """ files = {} # Get the current project name (adjust as needed) project_name = st.session_state.get('project_name', 'my_project') project_path = os.path.join(PROJECT_ROOT, project_name) # Define a list of files/directories to search for targets = [ "app.py", "requirements.txt", "Dockerfile", "docker-compose.yml", # Example YAML file "src", # Example subdirectory "assets" # Another example subdirectory ] # Iterate through the targets for target in targets: target_path = os.path.join(project_path, target) # If the target is a file, add it to the files dictionary if os.path.isfile(target_path): add_file_to_dictionary(files, target_path) # If the target is a directory, recursively search for files within it elif os.path.isdir(target_path): for root, _, filenames in os.walk(target_path): for filename in filenames: file_path = os.path.join(root, filename) add_file_to_dictionary(files, file_path) return files def add_file_to_dictionary(files, file_path): """Helper function to add a file to the files dictionary.""" filename = os.path.relpath(file_path, PROJECT_ROOT) # Get relative path # Handle text and binary files if filename.endswith((".py", ".txt", ".json", ".html", ".css", ".yml", ".yaml")): with open(file_path, "r") as f: files[filename] = f.read() else: with open(file_path, "rb") as f: file_content = f.read() files[filename] = base64.b64encode(file_content).decode("utf-8") # Project Workspace Creation st.subheader("Create a New Project") project_name = st.text_input("Enter project name:") st.write(summary) st.write("Next Step:") st.write(next_step) # Using the modified and extended class and functions, update the callback for the 'Automate' button in the Streamlit UI: if st.button("Automate", args=(hf_token,)): agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token) st.write("Autonomous Build Summary:") st.write(summary) st.write("Next Step:") st.write(next_step) # If everything went well, proceed to deploy the Space if agent._hf_api and agent.has_valid_hf_token(): agent.deploy_built_space_to_hf() # Use the hf_token to interact with the Hugging Face API api = HfApi(token=hf_token) # Function to create a Space on Hugging Face