import streamlit as st import os import subprocess from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import black from pylint import lint from io import StringIO import openai import sys # Set your OpenAI API key here openai.api_key = "YOUR_OPENAI_API_KEY" PROJECT_ROOT = "projects" # Global state to manage communication between Tool Box and Workspace Chat App if 'chat_history' not in st.session_state: st.session_state.chat_history = [] if 'terminal_history' not in st.session_state: st.session_state.terminal_history = [] if 'workspace_projects' not in st.session_state: st.session_state.workspace_projects = {} # Define functions for each feature # 1. Chat Interface def chat_interface(input_text): """Handles user input in the chat interface. Args: input_text: User's input text. Returns: The chatbot's response. """ # Load the GPT-2 model which is compatible with AutoModelForCausalLM model_name = "gpt2" try: model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) generator = pipeline("text-generation", model=model, tokenizer=tokenizer) except EnvironmentError as e: return f"Error loading model: {e}" # Truncate input text to avoid exceeding the model's maximum length max_input_length = 900 input_ids = tokenizer.encode(input_text, return_tensors="pt") if input_ids.shape[1] > max_input_length: input_ids = input_ids[:, :max_input_length] # Generate chatbot response outputs = model.generate( input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # 2. Terminal def terminal_interface(command, project_name=None): """Executes commands in the terminal. Args: command: User's command. project_name: Name of the project workspace to add installed packages. Returns: The terminal output. """ # Execute command try: process = subprocess.run(command.split(), capture_output=True, text=True) output = process.stdout # If the command is to install a package, update the workspace if "install" in command and project_name: requirements_path = os.path.join(PROJECT_ROOT, project_name, "requirements.txt") with open(requirements_path, "a") as req_file: package_name = command.split()[-1] req_file.write(f"{package_name}\n") except Exception as e: output = f"Error: {e}" return output # 3. Code Editor def code_editor_interface(code): """Provides code completion, formatting, and linting in the code editor. Args: code: User's code. Returns: Formatted and linted code. """ # Format code using black try: formatted_code = black.format_str(code, mode=black.FileMode()) except black.InvalidInput: formatted_code = code # Keep original code if formatting fails # Lint code using pylint try: pylint_output = StringIO() sys.stdout = pylint_output sys.stderr = pylint_output lint.Run(['--from-stdin'], stdin=StringIO(formatted_code)) sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ lint_message = pylint_output.getvalue() except Exception as e: lint_message = f"Pylint error: {e}" return formatted_code, lint_message # 4. Workspace def workspace_interface(project_name): """Manages projects, files, and resources in the workspace. Args: project_name: Name of the new project. Returns: Project creation status. """ project_path = os.path.join(PROJECT_ROOT, project_name) # Create project directory try: os.makedirs(project_path) requirements_path = os.path.join(project_path, "requirements.txt") with open(requirements_path, "w") as req_file: req_file.write("") # Initialize an empty requirements.txt file status = f'Project "{project_name}" created successfully.' st.session_state.workspace_projects[project_name] = {'files': []} except FileExistsError: status = f'Project "{project_name}" already exists.' return status def add_code_to_workspace(project_name, code, file_name): """Adds selected code files to the workspace. Args: project_name: Name of the project. code: Code to be added. file_name: Name of the file to be created. Returns: File creation status. """ project_path = os.path.join(PROJECT_ROOT, project_name) file_path = os.path.join(project_path, file_name) try: with open(file_path, "w") as code_file: code_file.write(code) status = f'File "{file_name}" added to project "{project_name}" successfully.' st.session_state.workspace_projects[project_name]['files'].append(file_name) except Exception as e: status = f"Error: {e}" return status # 5. AI-Infused Tools # Define custom AI-powered tools using Hugging Face models # Example: Text summarization tool def summarize_text(text): """Summarizes a given text using a Hugging Face model. Args: text: Text to be summarized. Returns: Summarized text. """ # Load the summarization model model_name = "facebook/bart-large-cnn" try: summarizer = pipeline("summarization", model=model_name) except EnvironmentError as e: return f"Error loading model: {e}" # Truncate input text to avoid exceeding the model's maximum length max_input_length = 1024 inputs = text if len(text) > max_input_length: inputs = text[:max_input_length] # Generate summary summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][ "summary_text" ] return summary # Example: Sentiment analysis tool def sentiment_analysis(text): """Performs sentiment analysis on a given text using a Hugging Face model. Args: text: Text to be analyzed. Returns: Sentiment analysis result. """ # Load the sentiment analysis model model_name = "distilbert-base-uncased-finetuned-sst-2-english" try: analyzer = pipeline("sentiment-analysis", model=model_name) except EnvironmentError as e: return f"Error loading model: {e}" # Perform sentiment analysis result = analyzer(text)[0] return result # Example: Text translation tool (code translation) def translate_code(code, source_language, target_language): """Translates code from one programming language to another using OpenAI Codex. Args: code: Code to be translated. source_language: The source programming language. target_language: The target programming language. Returns: Translated code. """ prompt = f"Translate the following {source_language} code to {target_language}:\n\n{code}" try: response = openai.Completion.create( engine="code-davinci-002", prompt=prompt, max_tokens=1024, temperature=0.3, top_p=1, n=1, stop=None ) translated_code = response.choices[0].text.strip() except Exception as e: translated_code = f"Error: {e}" return translated_code # 6. Code Generation def generate_code(idea): """Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model. Args: idea: The idea for the code to be generated. Returns: The generated code as a string. """ # Load the code generation model model_name = "EleutherAI/gpt-neo-2.7B" try: model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) except EnvironmentError as e: return f"Error loading model: {e}" # Generate the code input_text = f""" # Idea: {idea} # Code: """ input_ids = tokenizer.encode(input_text, return_tensors="pt") output_sequences = model.generate( input_ids=input_ids, max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True, temperature=0.7, # Adjust temperature for creativity top_k=50, # Adjust top_k for diversity ) generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True) # Remove the prompt and formatting parts = generated_code.split("\n# Code:") if len(parts) > 1: generated_code = parts[1].strip() else: generated_code = generated_code.strip() return generated_code # 7. AI Personas Creator def create_persona_from_text(text): """Creates an AI persona from the given text. Args: text: Text to be used for creating the persona. Returns: Persona prompt. """ persona_prompt = f""" As an elite expert developer with the highest level of proficiency in Streamlit, Gradio, and Hugging Face, I possess a comprehensive understanding of these technologies and their applications in web development and deployment. My expertise encompasses the following areas: Streamlit: * In-depth knowledge of Streamlit's architecture, components, and customization options. * Expertise in creating interactive and user-friendly dashboards and applications. * Proficiency in integrating Streamlit with various data sources and machine learning models. Gradio: * Thorough understanding of Gradio's capabilities for building and deploying machine learning interfaces. * Expertise in creating custom Gradio components and integrating them with Streamlit applications. * Proficiency in using Gradio to deploy models from Hugging Face and other frameworks. Hugging Face: * Comprehensive knowledge of Hugging Face's model hub and Transformers library. * Expertise in fine-tuning and deploying Hugging Face models for various NLP and computer vision tasks. * Proficiency in using Hugging Face's Spaces platform for model deployment and sharing. Deployment: * In-depth understanding of best practices for deploying Streamlit and Gradio applications. * Expertise in deploying models on cloud platforms such as AWS, Azure, and GCP. * Proficiency in optimizing deployment configurations for performance and scalability. Additional Skills: * Strong programming skills in Python and JavaScript. * Familiarity with Docker and containerization technologies. * Excellent communication and problem-solving abilities. I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications using Streamlit, Gradio, and Hugging Face. Please feel free to ask any questions or present any challenges you may encounter. Example: Task: Develop a Streamlit application that allows users to generate text using a Hugging Face model. The application should include a Gradio component for user input and model prediction. Solution: import streamlit as st import gradio as gr from transformers import pipeline # Create a Hugging Face pipeline huggingface_model = pipeline("text-generation") # Create a Streamlit app st.title("Hugging Face Text Generation App") # Define a Gradio component demo = gr.Interface( fn=huggingface_model, inputs=gr.Textbox(lines=2), outputs=gr.Textbox(lines=1), ) # Display the Gradio component in the Streamlit app st.write(demo) """ return persona_prompt # Streamlit App st.title("AI Personas Creator") # Sidebar navigation st.sidebar.title("Navigation") app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Personas Creator", "Tool Box", "Workspace Chat App"]) if app_mode == "AI Personas Creator": # AI Personas Creator st.header("Create the System Prompt of an AI Persona from YouTube or Text") st.subheader("From Text") text_input = st.text_area("Enter text to create an AI persona:") if st.button("Create Persona"): persona_prompt = create_persona_from_text(text_input) st.subheader("Persona Prompt") st.text_area("You may now copy the text below and use it as Custom prompt!", value=persona_prompt, height=300) elif app_mode == "Tool Box": # Tool Box st.header("AI-Powered Tools") # Chat Interface st.subheader("Chat with CodeCraft") chat_input = st.text_area("Enter your message:") if st.button("Send"): chat_response = chat_interface(chat_input) st.session_state.chat_history.append((chat_input, chat_response)) st.write(f"CodeCraft: {chat_response}") # Terminal Interface st.subheader("Terminal") terminal_input = st.text_input("Enter a command:") if st.button("Run"): terminal_output = terminal_interface(terminal_input) st.session_state.terminal_history.append((terminal_input, terminal_output)) st.code(terminal_output, language="bash") # Code Editor Interface st.subheader("Code Editor") code_editor = st.text_area("Write your code:", height=300) if st.button("Format & Lint"): formatted_code, lint_message = code_editor_interface(code_editor) st.code(formatted_code, language="python") st.info(lint_message) # Text Summarization Tool st.subheader("Summarize Text") text_to_summarize = st.text_area("Enter text to summarize:") if st.button("Summarize"): summary = summarize_text(text_to_summarize) st.write(f"Summary: {summary}") # Sentiment Analysis Tool st.subheader("Sentiment Analysis") sentiment_text = st.text_area("Enter text for sentiment analysis:") if st.button("Analyze Sentiment"): sentiment = sentiment_analysis(sentiment_text) st.write(f"Sentiment: {sentiment}") # Text Translation Tool (Code Translation) st.subheader("Translate Code") code_to_translate = st.text_area("Enter code to translate:") source_language = st.text_input("Enter source language (e.g., 'Python'):") target_language = st.text_input("Enter target language (e.g., 'JavaScript'):") if st.button("Translate Code"): translated_code = translate_code(code_to_translate, source_language, target_language) st.code(translated_code, language=target_language.lower()) # Code Generation st.subheader("Code Generation") code_idea = st.text_input("Enter your code idea:") if st.button("Generate Code"): generated_code = generate_code(code_idea) st.code(generated_code, language="python") elif app_mode == "Workspace Chat App": # Workspace Chat App st.header("Workspace Chat App") # Project Workspace Creation st.subheader("Create a New Project") project_name = st.text_input("Enter project name:") if st.button("Create Project"): workspace_status = workspace_interface(project_name) st.success(workspace_status) # Add Code to Workspace st.subheader("Add Code to Workspace") code_to_add = st.text_area("Enter code to add to workspace:") file_name = st.text_input("Enter file name (e.g., 'app.py'):") if st.button("Add Code"): add_code_status = add_code_to_workspace(project_name, code_to_add, file_name) st.success(add_code_status) # Terminal Interface with Project Context st.subheader("Terminal (Workspace Context)") terminal_input = st.text_input("Enter a command within the workspace:") if st.button("Run Command"): terminal_output = terminal_interface(terminal_input, project_name) st.code(terminal_output, language="bash") # Chat Interface for Guidance st.subheader("Chat with CodeCraft for Guidance") chat_input = st.text_area("Enter your message for guidance:") if st.button("Get Guidance"): chat_response = chat_interface(chat_input) st.session_state.chat_history.append((chat_input, chat_response)) st.write(f"CodeCraft: {chat_response}") # Display Chat History st.subheader("Chat History") for user_input, response in st.session_state.chat_history: st.write(f"User: {user_input}") st.write(f"CodeCraft: {response}") # Display Terminal History st.subheader("Terminal History") for command, output in st.session_state.terminal_history: st.write(f"Command: {command}") st.code(output, language="bash") # Display Projects and Files st.subheader("Workspace Projects") for project, details in st.session_state.workspace_projects.items(): st.write(f"Project: {project}") for file in details['files']: st.write(f" - {file}")