diff --git "a/app.py" "b/app.py" --- "a/app.py" +++ "b/app.py" @@ -1,4059 +1,1139 @@ -import gradio as gr -import os -import aiohttp -import asyncio -from git import Repo, GitCommandError, InvalidGitRepositoryError, NoSuchPathError -from pathlib import Path -from datetime import datetime, timedelta, timezone -import shutil -import json -import logging -import re -from typing import Dict, List, Optional, Tuple, Any -import subprocess -import plotly.express as px -import plotly.graph_objects as go -import time -import random -import pandas as pd +from flask import Flask, render_template_string, request, jsonify +import requests from collections import Counter -import string -from concurrent.futures import ThreadPoolExecutor -from hdbscan import HDBSCAN -# --- Required Imports --- -import hashlib -from functools import lru_cache -import threading -from http.server import HTTPServer, BaseHTTPRequestHandler -import markdown2 -import websockets -from websockets.server import WebSocketServerProtocol -from websockets.exceptions import ConnectionClosed, ConnectionClosedOK, ConnectionAbortedError, ConnectionResetError, WebSocketException -import signal # For graceful shutdown -# --------------------- - -# Assuming code_editor is available, e.g., installed via pip or included locally -try: - from code_editor import code_editor -except ImportError: - logging.error("The 'code_editor' Gradio component is not installed or available.") - logging.error("Please install it, e.g., 'pip install gradio_code_editor'") - def code_editor(*args, **kwargs): - logging.warning("Using dummy code_editor. Code editing and collaboration will not function.") - # Create a dummy component that looks like a Textbox but is non-interactive - return gr.Textbox(label=kwargs.get('label', 'Code Editor (Unavailable)'), interactive=False, value="Error: Code editor component not found. Install 'gradio_code_editor'.", lines=10) - - -# ========== Configuration ========== -WORKSPACE = Path("./issue_workspace") -WORKSPACE.mkdir(exist_ok=True) -GITHUB_API = "https://api.github.com/repos" -HF_INFERENCE_API = "https://api-inference.huggingface.co/models" -WEBHOOK_PORT = int(os.environ.get("WEBHOOK_PORT", 8000)) -WS_PORT = int(os.environ.get("WS_PORT", 8001)) -GRADIO_PORT = int(os.environ.get("GRADIO_PORT", 7860)) - -# Configure logging -logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') -logger = logging.getLogger(__name__) -# Set a higher logging level for libraries that are too verbose, e.g.: -logging.getLogger("websockets").setLevel(logging.WARNING) -logging.getLogger("aiohttp").setLevel(logging.WARNING) -logging.getLogger("urllib3").setLevel(logging.WARNING) # Might be used by git or other libs -logging.getLogger("git").setLevel(logging.WARNING) -logging.getLogger("hdbscan").setLevel(logging.WARNING) # HDBSCAN can be chatty - - -# Use ThreadPoolExecutor for any synchronous blocking operations if needed, -# but most heavy lifting (API calls, git) is now async. -executor = ThreadPoolExecutor(max_workers=4) - - -# Example HF models (replace with your actual models) -# Ensure these models are suitable for the tasks (text generation, embeddings) -HF_MODELS = { - "Mistral-8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1", - "Llama-2-7B-chat": "huggingface/llama-2-7b-chat-hf", - "CodeLlama-34B": "codellama/CodeLlama-34b-Instruct-hf", - "Gemma-7B-it": "google/gemma-7b-it", # Added another option -} -# Embedding model ID - fixed, not user selectable -HF_EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2" - -# Select default models defensively -DEFAULT_MODEL_KEY = "Mistral-8x7B" if "Mistral-8x7B" in HF_MODELS else (list(HF_MODELS.keys())[0] if HF_MODELS else None) -DEFAULT_MODEL_ID = HF_MODELS.get(DEFAULT_MODEL_KEY, None) - -DEFAULT_IDLE_MODEL_KEY = "Gemma-7B-it" if "Gemma-7B-it" in HF_MODELS else DEFAULT_MODEL_KEY # Prefer a smaller one if available -DEFAULT_IDLE_MODEL_ID = HF_MODELS.get(DEFAULT_IDLE_MODEL_KEY, DEFAULT_MODEL_ID) - -if not HF_MODELS: - logger.critical("No HF models configured! AI features will be disabled.") -elif DEFAULT_MODEL_ID is None: - logger.critical(f"Default model key '{DEFAULT_MODEL_KEY}' not found in configured models. AI features may be limited.") -if DEFAULT_IDLE_MODEL_ID is None: - logger.warning(f"Idle model key '{DEFAULT_IDLE_MODEL_KEY}' not found or no models configured. Idle tasks may be disabled or use the default model if available.") - - -# --- Idle State Configuration --- -STALE_ISSUE_THRESHOLD_DAYS = 30 -MAX_SUMMARY_COMPUTATIONS_PER_CYCLE = 2 -MAX_CONTEXT_COMPUTATIONS_PER_CYCLE = 3 -MAX_MISSING_INFO_COMPUTATIONS_PER_CYCLE = 1 -MAX_ANALYSIS_COMPUTATIONS_PER_CYCLE = 1 -RECLUSTER_THRESHOLD = 5 # Number of significant webhook changes before re-clustering is flagged -IDLE_PROCESSING_INTERVAL_SECONDS = 60.0 # How often the idle task loop runs - -# ========== Placeholder OTCodeEditor Class ========== -# WARNING: This is a placeholder and DOES NOT implement Operational Transformation. -# Concurrent edits WILL lead to data loss or inconsistencies. -class OTCodeEditor: - """ - Placeholder for an Operational Transformation (OT) enabled code editor backend. - This implementation is NOT thread-safe and does NOT handle concurrent edits correctly. - It merely logs received deltas and maintains a basic revision counter. - The actual document state is held client-side by the Gradio code_editor component. - A real collaborative editor would require a robust OT backend to manage - the authoritative document state and transform operations. - """ - def __init__(self, initial_value: Dict[str, str]): - # In a real OT system, this would initialize the document state - # For this placeholder, we just store the initial files dict - self.files: Dict[str, str] = initial_value.copy() - self.revision = 0 # Basic revision counter, not used for OT logic - logger.debug(f"OTCodeEditor initialized with files: {list(self.files.keys())}") - - def apply_delta(self, delta: Dict[str, Any]): - # VERY basic placeholder: This logs the delta but does NOT perform OT. - # It does NOT handle concurrent edits safely. - # In a real OT system, this would transform the delta against the current state - # and apply it, incrementing the revision based on successful application. - logger.warning(f"Placeholder apply_delta called. Delta: {str(delta)[:200]}. " - "WARNING: Full Operational Transformation is NOT implemented. Concurrent edits are UNSAFE.") - # The Gradio component holds the actual text state client-side. - # A real OT backend would use the delta to update its authoritative state. - # We only increment revision for basic tracking visibility if needed. - self.revision += 1 - - def get_content(self) -> Dict[str, str]: - # This is not used by the current Gradio code_editor integration, - # as the component holds the state client-side. - # In a real OT system, this would return the current authoritative document state. - return self.files.copy() - -# ========== Modern Theme ========== -try: - theme = gr.themes.Soft( - primary_hue="violet", - secondary_hue="emerald", - radius_size="lg", - font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui"] - ).set( - button_primary_background_fill="linear-gradient(90deg, #8B5CF6 0%, #EC4899 100%)", - button_primary_text_color="white", - block_label_text_size="lg", - block_label_text_weight="600", - block_title_text_size="lg", - block_title_text_weight="800", - panel_background_fill="white", - block_shadow="*shadow_drop_lg", - # Add some more modern touches - input_background_fill="#f9fafb", - input_border_color="#e5e7eb", - input_border_radius="md", - button_secondary_background_fill="#f3f4f6", - button_secondary_text_color="#374151", - button_secondary_border_color="#d1d5db", - table_border_color="#e5e7eb", - table_row_background_even="#f9fafb", - table_row_background_odd="#ffffff", - # Use slightly softer colors for plots if default is too bright - # (This might need specific Plotly config instead of theme) - ) -except AttributeError as e: - logger.warning(f"Could not apply all theme settings (might be Gradio version difference): {e}. Using default Soft theme.") - theme = gr.themes.Soft() - -# Additional UI/UX Enhancements -custom_css = """ -/* Smooth transitions for buttons and inputs */ -button, input, select, textarea { - transition: background-color 0.3s ease, color 0.3s ease, border-color 0.3s ease; -} - -/* Hover effects for buttons */ -button:hover { - filter: brightness(1.1); -} - -/* Focus styles for inputs */ -input:focus, select:focus, textarea:focus { - outline: none; - border-color: #8B5CF6; - box-shadow: 0 0 5px rgba(139, 92, 246, 0.5); -} - -/* Scrollbar styling for scrollable divs */ -#issue_preview_div::-webkit-scrollbar, -#ai_output_md::-webkit-scrollbar { - width: 8px; -} - -#issue_preview_div::-webkit-scrollbar-thumb, -#ai_output_md::-webkit-scrollbar-thumb { - background-color: #8B5CF6; - border-radius: 4px; -} - -/* Responsive layout improvements */ -@media (max-width: 768px) { - #config-panel { - flex-direction: column !important; - } - #issue_list_df { - font-size: 0.9em !important; - } -} - -/* Enhanced table styles */ -.gradio-dataframe-container table { - border-collapse: separate !important; - border-spacing: 0 8px !important; -} - -.gradio-dataframe-container table tr { - background-color: #f9fafb !important; - border-radius: 8px !important; - box-shadow: 0 1px 3px rgba(0,0,0,0.1); -} - -.gradio-dataframe-container table tr:hover { - background-color: #ede9fe !important; - cursor: pointer; -} - -/* Button styles */ -.gr-button { - border-radius: 8px !important; - font-weight: 600 !important; -} - -/* Accordion header styles */ -#ai_tools_accordion > .label { - font-weight: 700 !important; - font-size: 1.1em !important; - color: #6b21a8 !important; -} - -/* Status bar improvements */ -#status_output_txt textarea { - background-color: #f3f4f6 !important; - border-radius: 6px !important; - font-family: 'Fira Code', monospace !important; - font-size: 0.95em !important; - color: #4b5563 !important; -} - -/* Code editor improvements */ -#code_editor_component { - border: 1px solid #ddd !important; - border-radius: 8px !important; - box-shadow: 0 2px 6px rgba(139, 92, 246, 0.15); -} - -/* Plot improvements */ -#stats_plot_viz, #analytics_severity_plot { - border-radius: 8px; - box-shadow: 0 2px 8px rgba(0,0,0,0.1); - background-color: white; -} -""" - - -# ========== Enhanced Webhook Handler ========== -class WebhookHandler(BaseHTTPRequestHandler): - manager_instance: Optional['IssueManager'] = None - main_loop: Optional[asyncio.AbstractEventLoop] = None # Store reference to the main asyncio loop - - def do_POST(self): - content_length = int(self.headers.get('Content-Length', 0)) - if content_length == 0: - self.send_response(400) - self.send_header("Content-type", "text/plain") - self.end_headers() - self.wfile.write(b"Empty payload") - logger.warning("Received empty webhook payload.") - return - - try: - payload_bytes = self.rfile.read(content_length) - payload = json.loads(payload_bytes.decode('utf-8')) - except json.JSONDecodeError: - logger.error(f"Invalid JSON payload received: {payload_bytes[:500]}") - self.send_response(400) - self.send_header("Content-type", "text/plain") - self.end_headers() - self.wfile.write(b"Invalid JSON payload") - return - except Exception as e: - logger.error(f"Error reading webhook payload: {e}") - self.send_response(500) - self.end_headers() - return - - event = self.headers.get('X-GitHub-Event') - delivery_id = self.headers.get('X-GitHub-Delivery') - logger.info(f"Received GitHub webhook event: {event} (Delivery ID: {delivery_id})") - - if event == 'issues' and WebhookHandler.manager_instance and WebhookHandler.main_loop: - action = payload.get('action') - logger.info(f"Issue action: {action}") - # Handle common actions that affect issue state or content - if action in ['opened', 'reopened', 'closed', 'assigned', 'unassigned', 'edited', 'labeled', 'unlabeled', 'milestoned', 'demilestoned']: - # Check if the loop is running before scheduling - if WebhookHandler.main_loop.is_running(): - # Schedule the async handler to run in the main event loop - # Use run_coroutine_threadsafe as this is called from a different thread - asyncio.run_coroutine_threadsafe( - WebhookHandler.manager_instance.handle_webhook_event(event, action, payload), - WebhookHandler.main_loop - ) - logger.debug(f"Scheduled webhook processing for action '{action}' in main loop.") - else: - logger.error("Asyncio event loop is not running in the target thread for webhook. Cannot process event.") - # Respond with an error as processing couldn't be scheduled - self.send_response(500) - self.send_header("Content-type", "text/plain") - self.end_headers() - self.wfile.write(b"Async processing loop not available.") - return - else: - logger.info(f"Webhook action '{action}' received but not actively handled by current logic.") - elif event == 'ping': - logger.info("Received GitHub webhook ping.") - else: - logger.warning(f"Unhandled event type: {event} or manager/loop not initialized.") - - # Always respond 200 OK for successful receipt, even if action is ignored - self.send_response(200) - self.send_header("Content-type", "text/plain") - self.end_headers() - self.wfile.write(b"OK") - -# ========== AI-Powered Issue Manager ========== -class IssueManager: - def __init__(self): - self.issues: Dict[int, dict] = {} - self.repo_url: Optional[str] = None - self.repo_owner: Optional[str] = None - self.repo_name: Optional[str] = None - self.repo_local_path: Optional[Path] = None - self.repo: Optional[Repo] = None - self.github_token: Optional[str] = None - self.hf_token: Optional[str] = None - self.collaborators: Dict[str, dict] = {} # {client_id: {name: str, status: str}} - self.points: int = 0 # Placeholder for potential gamification - self.severity_rules: Dict[str, List[str]] = { - "Critical": ["critical", "urgent", "security", "crash", "blocker", "p0", "s0"], - "High": ["high", "important", "error", "regression", "major", "p1", "s1"], - "Medium": ["medium", "bug", "performance", "minor", "p2", "s2"], - "Low": ["low", "documentation", "enhancement", "trivial", "feature", "p3", "s3", "chore", "refactor", "question", "help wanted"] - } - self.issue_clusters: Dict[int, List[int]] = {} # {cluster_id: [issue_index_in_list, ...]} - self.issue_list_for_clustering: List[dict] = [] # List of issue dicts used for the last clustering run - self.ws_clients: List[WebSocketServerProtocol] = [] - self.code_editors: Dict[int, OTCodeEditor] = {} # {issue_id: OTCodeEditor_instance} - # Get or create the loop in the thread where the manager is initialized (main thread) - try: - self.main_loop = asyncio.get_running_loop() - logger.debug(f"IssueManager found running asyncio loop: {id(self.main_loop)}") - except RuntimeError: - self.main_loop = asyncio.new_event_loop() - asyncio.set_event_loop(self.main_loop) - logger.debug(f"IssueManager created and set new asyncio loop: {id(self.main_loop)}") - - self.broadcast_task: Optional[asyncio.Task] = None - self.idle_task: Optional[asyncio.Task] = None - - # --- State for Idle Processing Results --- - self.precomputed_context: Dict[int, Dict[str, Any]] = {} # {issue_id: {content: str, files: list, error: str, timestamp: float}} - self.precomputed_summaries: Dict[int, Dict[str, Any]] = {} # {issue_id: {summary: str, error: str, timestamp: float}} - self.precomputed_missing_info: Dict[int, Dict[str, Any]] = {} # {issue_id: {info_needed: str, error: str, timestamp: float}} - self.precomputed_analysis: Dict[int, Dict[str, Any]] = {} # {issue_id: {hypothesis: str, error: str, timestamp: float}} - # self.code_embeddings: Dict[str, List[float]] = {} # Not currently used after clustering - self.potential_duplicates: Dict[int, List[int]] = {} # {issue_id: [duplicate_issue_id, ...]} - self.stale_issues: List[int] = [] # [issue_id, ...] - self.high_priority_candidates: List[int] = [] # [issue_id, ...] - self.last_webhook_time: float = time.time() # Track last webhook for potential future use - self.needs_recluster: bool = False - self._webhook_change_count = 0 - - # --- Configuration for Idle Tasks --- - self.idle_processing_interval = IDLE_PROCESSING_INTERVAL_SECONDS - self.max_context_computations_per_cycle = MAX_CONTEXT_COMPUTATIONS_PER_CYCLE - self.max_summary_computations_per_cycle = MAX_SUMMARY_COMPUTATIONS_PER_CYCLE - self.max_missing_info_computations_per_cycle = MAX_MISSING_INFO_COMPUTATIONS_PER_CYCLE - self.max_analysis_computations_per_cycle = MAX_ANALYSIS_COMPUTATIONS_PER_CYCLE - self.stale_issue_threshold_days = STALE_ISSUE_THRESHOLD_DAYS - self.recluster_threshold = RECLUSTER_THRESHOLD - - # Shutdown signals (placeholders, set by main execution block) - self.stop_ws_server = None - self.stop_webhook_server = None - - def start_broadcast_loop(self): - """Starts the periodic broadcast task.""" - # Ensure task is created in the correct loop - if not self.main_loop.is_running(): - logger.error("Cannot start broadcast loop: Main event loop is not running.") - return - - if not self.broadcast_task or self.broadcast_task.done(): - self.broadcast_task = self.main_loop.create_task(self.broadcast_collaboration_status()) - logger.info("Started collaboration status broadcast loop.") - else: - logger.debug("Broadcast loop already running.") - - - def stop_broadcast_loop(self): - """Stops the periodic broadcast task.""" - if self.broadcast_task and not self.broadcast_task.done(): - logger.info("Stopping collaboration status broadcast loop...") - self.broadcast_task.cancel() - # Await the task to finish cancellation in an async context if needed, - # but cancelling is sufficient to signal it to stop. - self.broadcast_task = None # Clear the reference - - - def _get_issue_hash(self, issue_data: Optional[dict]) -> str: - """Generates a hash based on key issue content for caching AI suggestions.""" - if not issue_data: - return "empty_issue_hash" # Handle cases where issue_data is None - - content = f"{issue_data.get('title', '')}{issue_data.get('body', '')}{','.join(issue_data.get('labels',[]))}" - return hashlib.md5(content.encode('utf-8', errors='ignore')).hexdigest() # Use utf-8 and ignore errors - - - @lru_cache(maxsize=100) - async def cached_suggestion(self, issue_hash: str, model_key: str) -> str: - """Retrieves or generates an AI suggestion, using an LRU cache based on issue content hash.""" - logger.debug(f"Checking cache for suggestion: hash={issue_hash}, model={model_key}") - # The cache decorator handles the cache hit/miss logic. - # If it's a miss, the decorated function body is executed. - - # Find the issue data corresponding to the hash - found_issue = None - # This linear scan is inefficient for many issues, but hashes are only for cache keys. - # A dict mapping hashes to issue IDs could be more efficient if this becomes a bottleneck. - # However, issues dict is not huge usually, so this is likely fine. - for issue in self.issues.values(): - if self._get_issue_hash(issue) == issue_hash: - found_issue = issue - break - - if not found_issue: - logger.error(f"Could not find issue data for hash {issue_hash} in current state. Suggestion cannot be generated.") - # Corrected: Return error message here if issue data is missing - return "Error: Issue data for this suggestion request (hash) not found in current state. The issue might have been updated or closed. Please re-select the issue." - - if model_key not in HF_MODELS or HF_MODELS.get(model_key) is None: - logger.error(f"Invalid or unconfigured model key requested: {model_key}") - return f"Error: Invalid or unconfigured model key: {model_key}" - - logger.info(f"Cache miss or first request for issue hash {issue_hash}. Requesting suggestion from {model_key}.") - # Call the actual suggestion generation function - return await self.suggest_resolution(found_issue, model_key) - - async def handle_webhook_event(self, event: str, action: str, payload: dict): - """Processes incoming webhook events to update the issue state.""" - logger.info(f"Processing webhook event: {event}, action: {action}") - issue_data = payload.get('issue') - repo_data = payload.get('repository') - - if not issue_data or not repo_data: - logger.warning("Webhook payload missing 'issue' or 'repository' data.") - return - - event_repo_url = repo_data.get('html_url') - # Only process events for the currently loaded repository - # Use .rstrip("/") on both sides for robust comparison - if self.repo_url is None or event_repo_url is None or event_repo_url.rstrip("/") != self.repo_url.rstrip("/"): - logger.info(f"Ignoring webhook event for different repository: {event_repo_url} (Current: {self.repo_url})") - return - - issue_number = issue_data.get('number') - if issue_number is None: # Check explicitly for None - logger.warning("Webhook issue data missing 'number'.") - return - - needs_ui_update = False - significant_change = False # Flag for changes affecting clustering/content/AI caches - - if action == 'closed': - logger.info(f"Webhook: Removing closed issue {issue_number} from active list.") - if issue_number in self.issues: - self.issues.pop(issue_number) - needs_ui_update = True - significant_change = True # Closing is a significant change - # Clean up associated cached/computed data - self.precomputed_context.pop(issue_number, None) - self.precomputed_summaries.pop(issue_number, None) - self.precomputed_missing_info.pop(issue_number, None) - self.precomputed_analysis.pop(issue_number, None) - self.potential_duplicates.pop(issue_number, None) - # Remove from lists if present (use list comprehension for safe removal) - self.stale_issues = [i for i in self.stale_issues if i != issue_number] - self.high_priority_candidates = [i for i in self.high_priority_candidates if i != issue_number] - # Remove the code editor instance for the closed issue - self.code_editors.pop(issue_number, None) - logger.debug(f"Cleaned up state for closed issue {issue_number}.") - else: - logger.debug(f"Webhook: Issue {issue_number} closed, but not found in current active list. No state change needed.") - - - elif action in ['opened', 'reopened', 'edited', 'assigned', 'unassigned', 'labeled', 'unlabeled', 'milestoned', 'demilestoned']: - logger.info(f"Webhook: Adding/Updating issue {issue_number} (action: {action}).") - processed_data = self._process_issue_data(issue_data) - - old_issue = self.issues.get(issue_number) - # Check for changes that impact AI suggestions or clustering - if not old_issue or \ - old_issue.get('body') != processed_data.get('body') or \ - old_issue.get('title') != processed_data.get('title') or \ - set(old_issue.get('labels', [])) != set(processed_data.get('labels', [])): - significant_change = True - logger.info(f"Significant change detected for issue {issue_number} (content/labels).") - # Invalidate ALL precomputed AI state on significant edit - self.precomputed_context.pop(issue_number, None) - self.precomputed_summaries.pop(issue_number, None) - self.precomputed_missing_info.pop(issue_number, None) - self.precomputed_analysis.pop(issue_number, None) - # Clear the entire suggestion cache on significant change - self.cached_suggestion.cache_clear() - logger.debug("Cleared suggestion cache due to significant issue change.") - - # Check if state-related fields changed (affecting idle processing lists) - # This check is for logging/debugging, the idle loop re-evaluates lists anyway - if not old_issue or \ - old_issue.get('updated_at') != processed_data.get('updated_at') or \ - old_issue.get('assignee') != processed_data.get('assignee') or \ - set(old_issue.get('labels', [])) != set(processed_data.get('labels', [])) or \ - old_issue.get('state') != processed_data.get('state'): # State change (open/reopened) - logger.debug(f"State-related change detected for issue {issue_number} (update time, assignee, labels, state). Idle loop will re-evaluate.") - - self.issues[issue_number] = processed_data - needs_ui_update = True - else: - logger.info(f"Ignoring webhook action '{action}' for issue {issue_number} (already filtered).") - - # --- Track changes for idle processing --- - if needs_ui_update: - self.last_webhook_time = time.time() - if significant_change: - self._increment_change_counter() - # Rebuild the list used for clustering immediately if a significant change occurred - # This list is a snapshot used by the async clustering task - self.issue_list_for_clustering = list(self.issues.values()) - logger.info("Issue list for clustering updated due to significant webhook change.") - # Broadcast UI update notification - # Schedule this in the main loop using call_soon_threadsafe - if self.main_loop.is_running(): - self.main_loop.call_soon_threadsafe(asyncio.create_task, self.broadcast_issue_update()) - logger.debug("Scheduled issue update broadcast.") - else: - logger.warning("Main loop not running, cannot broadcast issue update.") - - - def _increment_change_counter(self): - """Increments change counter and sets recluster flag if threshold reached.""" - self._webhook_change_count += 1 - logger.debug(f"Significant change detected. Change count: {self._webhook_change_count}/{self.recluster_threshold}") - if self._webhook_change_count >= self.recluster_threshold: - self.needs_recluster = True - logger.info(f"Change threshold ({self.recluster_threshold}) reached. Flagging for re-clustering.") - - def _process_issue_data(self, issue_data: dict) -> dict: - """Helper to structure issue data consistently.""" - return { - "id": issue_data.get('number'), # Use .get for safety - "title": issue_data.get('title', 'No Title Provided'), - "body": issue_data.get('body', ''), - "state": issue_data.get('state', 'unknown'), - "labels": sorted([label.get('name', '') for label in issue_data.get('labels', []) if isinstance(label, dict) and label.get('name')]), # Ensure labels are dicts and have name - "assignee": issue_data.get('assignee', {}).get('login') if issue_data.get('assignee') and isinstance(issue_data.get('assignee'), dict) else None, - "url": issue_data.get('html_url', '#'), - "created_at": issue_data.get('created_at'), - "updated_at": issue_data.get('updated_at'), - } - - async def crawl_issues(self, repo_url: str, github_token: Optional[str], hf_token: Optional[str]) -> Tuple[List[List], go.Figure, str, go.Figure]: - """ - Crawls issues, resets state, clones repo, clusters, starts background tasks. - Returns dataframe data, stats plot, status message, and analytics plot. - """ - # Strip whitespace from inputs - repo_url = repo_url.strip() if repo_url else None - github_token = github_token.strip() if github_token else None - hf_token = hf_token.strip() if hf_token else None - - # Define a default empty plot for consistent return type - def get_empty_plot(title="Plot"): - fig = go.Figure() - fig.update_layout(title=title, xaxis={"visible": False}, yaxis={"visible": False}, - annotations=[{"text": "Scan needed.", "xref": "paper", "yref": "paper", "showarrow": False, "font": {"size": 16}}], - plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)') - return fig - - if not repo_url or not hf_token: - logger.error("Repository URL and Hugging Face Token are required.") - empty_fig = get_empty_plot("Issue Severity Distribution") - return [], empty_fig, "Error: Repository URL and Hugging Face Token are required.", empty_fig - - logger.info(f"Starting new issue crawl and setup for {repo_url}") - - # --- Reset Manager State --- - # Stop background tasks first - self.stop_idle_processing() - self.stop_broadcast_loop() - - self.issues = {} - # Clear code_editors instances - self.code_editors = {} - self.issue_clusters = {} - self.issue_list_for_clustering = [] - self.cached_suggestion.cache_clear() # Clear AI suggestion cache - self.precomputed_context = {} - self.precomputed_summaries = {} - self.precomputed_missing_info = {} - self.precomputed_analysis = {} - # self.code_embeddings = {} # Not used - self.potential_duplicates = {} - self.stale_issues = [] - self.high_priority_candidates = [] - self.needs_recluster = False - self._webhook_change_count = 0 - self.last_webhook_time = time.time() - self.repo = None # Clear the repo object - self.repo_url = repo_url - self.github_token = github_token - self.hf_token = hf_token - logger.info("Internal state reset for new crawl.") - - # --- Repository Cloning/Updating --- - match = re.match(r"https?://github\.com/([^/]+)/([^/]+)", self.repo_url) - if not match: - logger.error(f"Invalid GitHub URL format: {self.repo_url}") - empty_fig = get_empty_plot("Issue Severity Distribution") - return [], empty_fig, "Error: Invalid GitHub URL format. Use https://github.com/owner/repo", empty_fig - self.repo_owner, self.repo_name = match.groups() - self.repo_local_path = WORKSPACE / f"{self.repo_owner}_{self.repo_name}" - - try: - if self.repo_local_path.exists(): - logger.info(f"Attempting to update existing repository clone at {self.repo_local_path}") - try: - self.repo = Repo(self.repo_local_path) - # Ensure the origin remote matches the requested URL - if not self.repo.remotes or 'origin' not in self.repo.remotes: - logger.warning(f"Existing repo at {self.repo_local_path} has no 'origin' remote. Re-cloning.") - if self.repo_local_path.exists(): shutil.rmtree(self.repo_local_path) - self.repo = Repo.clone_from(self.repo_url, self.repo_local_path, progress=lambda op, cur, tot, msg: logger.debug(f"Clone progress: {msg}")) - else: - origin = self.repo.remotes.origin - remote_url = next((u for u in origin.urls), None) # Get first URL - expected_urls = {self.repo_url, self.repo_url + ".git"} - if remote_url not in expected_urls: - logger.warning(f"Existing repo path {self.repo_local_path} has different remote URL ('{remote_url}' vs '{self.repo_url}'). Removing and re-cloning.") - # Remove the directory entirely before re-cloning - if self.repo_local_path.exists(): shutil.rmtree(self.repo_local_path) - self.repo = Repo.clone_from(self.repo_url, self.repo_local_path, progress=lambda op, cur, tot, msg: logger.debug(f"Clone progress: {msg}")) - else: - logger.info("Pulling latest changes...") - # Use a timeout for pull operations - try: - # Fetch first to get latest refs - origin.fetch(progress=lambda op, cur, tot, msg: logger.debug(f"Fetch progress: {msg}"), timeout=120) - # Then pull - origin.pull(progress=lambda op, cur, tot, msg: logger.debug(f"Pull progress: {msg}"), timeout=120) - # Unshallow if necessary - if self.repo.git.rev_parse('--is-shallow-repository').strip() == 'true': - logger.info("Repository is shallow, unshallowing...") - # Use a timeout for unshallow - self.repo.git.fetch('--unshallow', timeout=300) - except GitCommandError as pull_err: - logger.error(f"Git pull/fetch error: {pull_err}. Proceeding with potentially stale local copy.") - except Exception as pull_err: - logger.exception(f"Unexpected error during git pull/fetch: {pull_err}. Proceeding with potentially stale local copy.") - - - except (InvalidGitRepositoryError, NoSuchPathError): - logger.warning(f"Invalid or missing Git repository at {self.repo_local_path}. Re-cloning.") - # Ensure directory is clean before re-cloning - if self.repo_local_path.exists(): shutil.rmtree(self.repo_local_path) - self.repo = Repo.clone_from(self.repo_url, self.repo_local_path, progress=lambda op, cur, tot, msg: logger.debug(f"Clone progress: {msg}")) - except GitCommandError as git_err: - logger.error(f"Git operation error during update: {git_err}. Trying to proceed with existing copy, but it might be stale.") - if not self.repo: # If repo object wasn't successfully created before the error - try: self.repo = Repo(self.repo_local_path) - except Exception: logger.error("Failed to even load existing repo after git error.") - except Exception as e: - logger.exception(f"An unexpected error occurred during repository update check: {e}") - # If repo object wasn't successfully created before the error - if not self.repo: - try: self.repo = Repo(self.repo_local_path) - except Exception: logger.error("Failed to even load existing repo after update error.") - - else: - logger.info(f"Cloning repository {self.repo_url} to {self.repo_local_path}") - # Use a timeout for the initial clone - self.repo = Repo.clone_from(self.repo_url, self.repo_local_path, progress=lambda op, cur, tot, msg: logger.debug(f"Clone progress: {msg}"), timeout=300) - - - logger.info("Repository clone/update process finished.") - if not self.repo: - raise Exception("Repository object could not be initialized after cloning/update.") - - except GitCommandError as e: - logger.error(f"Failed to clone/update repository: {e}") - empty_fig = get_empty_plot("Issue Severity Distribution") - empty_fig.update_layout(annotations=[{"text": "Repo Error.", "xref": "paper", "yref": "paper", "showarrow": False, "font": {"size": 16}}]) - return [], empty_fig, f"Error cloning/updating repository: {e}. Check URL, permissions, and network.", empty_fig - except Exception as e: - logger.exception(f"An unexpected error occurred during repository handling: {e}") - empty_fig = get_empty_plot("Issue Severity Distribution") - empty_fig.update_layout(annotations=[{"text": "Repo Error.", "xref": "paper", "yref": "paper", "showarrow": False, "font": {"size": 16}}]) - return [], empty_fig, f"An unexpected error occurred during repo setup: {e}", empty_fig - - - # --- Issue Fetching --- - api_url = f"{GITHUB_API}/{self.repo_owner}/{self.repo_name}/issues?state=open&per_page=100" - headers = {"Accept": "application/vnd.github.v3+json"} - if github_token: - headers["Authorization"] = f"token {github_token}" - - try: - all_issues_data = [] - page = 1 - logger.info(f"Fetching open issues from GitHub API (repo: {self.repo_owner}/{self.repo_name})...") - async with aiohttp.ClientSession(headers=headers) as session: - while True: - paginated_url = api_url - logger.debug(f"Fetching URL: {paginated_url}") - # Use a timeout for API requests - try: - async with session.get(paginated_url, timeout=30) as response: - rate_limit_remaining = response.headers.get('X-RateLimit-Remaining') - rate_limit_reset = response.headers.get('X-RateLimit-Reset') - logger.debug(f"GitHub API Response Status: {response.status}, RateLimit Remaining: {rate_limit_remaining}, Reset: {rate_limit_reset}") - - if response.status == 403 and rate_limit_remaining == '0': - reset_time = int(rate_limit_reset) if rate_limit_reset else time.time() + 60 - wait_time = max(reset_time - time.time() + 5, 0) # Wait until reset time + a buffer - logger.warning(f"GitHub API rate limit exceeded. Waiting until {datetime.fromtimestamp(reset_time).strftime('%H:%M:%S')} ({wait_time:.0f}s)") - await asyncio.sleep(wait_time) - continue # Retry the same page - - response.raise_for_status() # Raise for other 4xx/5xx errors - - issues_page_data = await response.json() - if not issues_page_data: break # No more issues on this page - - logger.info(f"Fetched page {page} with {len(issues_page_data)} items.") - all_issues_data.extend(issues_page_data) - - link_header = response.headers.get('Link') - if link_header and 'rel="next"' in link_header: - # Simple parsing for the next link, more robust parsing might be needed for complex headers - next_url_match = re.search(r'<([^>]+)>;\s*rel="next"', link_header) - if next_url_match: - # The next URL is provided directly, use it - api_url = next_url_match.group(1) - page += 1 # Increment page counter for logging, though not strictly needed for the loop logic now - logger.debug(f"Found next page link: {api_url}") - else: - logger.warning("Link header contains 'rel=\"next\"' but could not parse the URL. Stopping pagination.") - break - else: - logger.debug("No 'next' link found in Link header. Assuming last page.") - break - await asyncio.sleep(0.1) # Small delay between requests - - except asyncio.TimeoutError: - logger.warning(f"GitHub API request timed out for page {page}. Stopping pagination early.") - break # Stop pagination on timeout - except aiohttp.ClientResponseError as e: - # Re-raise client response errors so the outer handler catches them - raise e - except Exception as e: - logger.exception(f"An unexpected error occurred during GitHub API pagination for page {page}. Stopping pagination.") - break # Stop pagination on unexpected error - - - logger.info(f"Total items fetched (including potential PRs): {len(all_issues_data)}") - # Filter out pull requests (issues with 'pull_request' key) - self.issues = { - issue_data['number']: self._process_issue_data(issue_data) - for issue_data in all_issues_data - if 'pull_request' not in issue_data and issue_data.get('number') is not None # Ensure number exists - } +import re - logger.info(f"Filtered out pull requests, {len(self.issues)} actual open issues remaining.") - - empty_fig = get_empty_plot("Issue Severity Distribution") - if not self.issues: - logger.warning("No open issues found for this repository.") - empty_fig.update_layout(annotations=[{"text": "No issues found.", "xref": "paper", "yref": "paper", "showarrow": False, "font": {"size": 16}}]) - return [], empty_fig, "No open issues found in the repository.", empty_fig - - # --- Clustering and UI Data Prep --- - self.issue_list_for_clustering = list(self.issues.values()) - logger.info("Clustering issues...") - await self._cluster_similar_issues() - - # --- Initial Idle Task Prep (Run synchronously after load) --- - logger.info("Identifying potential duplicates based on initial clusters...") - self._identify_potential_duplicates() - logger.info("Identifying potentially stale issues...") - self._identify_stale_issues() - logger.info("Identifying high priority candidates...") - self._identify_high_priority_candidates() - - # --- Prepare Dataframe Output & Stats --- - dataframe_data = [] - severity_counts = {"Critical": 0, "High": 0, "Medium": 0, "Low": 0, "Unknown": 0} - index_to_cluster_id: Dict[int, int] = {} - # Map issue index in the clustering list back to its cluster ID - for cluster_id, indices in self.issue_clusters.items(): - for index in indices: - if 0 <= index < len(self.issue_list_for_clustering): - index_to_cluster_id[index] = cluster_id - else: - logger.warning(f"Clustering returned invalid index {index} for list of length {len(self.issue_list_for_clustering)}") - - for i, issue in enumerate(self.issue_list_for_clustering): - severity = self._determine_severity(issue.get('labels', [])) # Use get for safety - severity_counts[severity] += 1 - # Get cluster ID using the index from the clustering list - cluster_id = index_to_cluster_id.get(i, -1) - dataframe_data.append([ - issue.get('id', 'N/A'), # Use get for safety - issue.get('title', 'No Title'), # Use get for safety - severity, - cluster_id if cluster_id != -1 else "N/A" # Display "N/A" for noise (-1) - ]) - - logger.info("Generating statistics plot...") - stats_fig = self._generate_stats_plot(severity_counts) - - # --- Start Background Tasks --- - # Ensure tasks are created in the manager's loop - self.start_broadcast_loop() - self.start_idle_processing() - - success_msg = f"Found {len(self.issues)} open issues. Clustered into {len(self.issue_clusters)} groups. Repo ready. Background analysis started." - logger.info(success_msg) - # Return both plots (stats and analytics severity are the same initially) - return dataframe_data, stats_fig, success_msg, stats_fig - - except aiohttp.ClientResponseError as e: - logger.error(f"GitHub API request failed: Status={e.status}, Message='{e.message}', URL='{e.request_info.url}'") - error_msg = f"Error fetching issues: {e.status} - {e.message}. Check token/URL." - if e.status == 404: error_msg = f"Error: Repository not found at {self.repo_url}." - elif e.status == 401: error_msg = "Error: Invalid GitHub token or insufficient permissions for this repository." - elif e.status == 403: - rate_limit_remaining = e.headers.get('X-RateLimit-Remaining') # FIX: Access rate_limit_remaining from error headers - rate_limit_reset = e.headers.get('X-RateLimit-Reset') - reset_time_str = "unknown" - if rate_limit_reset: - try: reset_time_str = datetime.fromtimestamp(int(rate_limit_reset), timezone.utc).strftime('%Y-%m-%d %H:%M:%S %Z') - except ValueError: pass - error_msg = f"Error: GitHub API rate limit likely exceeded or access forbidden (Remaining: {rate_limit_remaining}). Reset time: {reset_time_str}. Check token or wait." - self.stop_idle_processing() - self.stop_broadcast_loop() - empty_fig = get_empty_plot("Issue Severity Distribution") - empty_fig.update_layout(annotations=[{"text": "API Error.", "xref": "paper", "yref": "paper", "showarrow": False, "font": {"size": 16}}]) - return [], empty_fig, error_msg, empty_fig - except asyncio.TimeoutError: - logger.error("GitHub API request timed out.") - self.stop_idle_processing() - self.stop_broadcast_loop() - empty_fig = get_empty_plot("Issue Severity Distribution") - empty_fig.update_layout(annotations=[{"text": "API Timeout.", "xref": "paper", "yref": "paper", "showarrow": False, "font": {"size": 16}}]) - return [], empty_fig, "Error: GitHub API request timed out.", empty_fig - except Exception as e: - self.stop_idle_processing() - self.stop_broadcast_loop() - logger.exception(f"An unexpected error occurred during issue crawl: {e}") - empty_fig = get_empty_plot("Issue Severity Distribution") - empty_fig.update_layout(annotations=[{"text": "Unexpected Error.", "xref": "paper", "yref": "paper", "showarrow": False, "font": {"size": 16}}]) - return [], empty_fig, f"An unexpected error occurred: {e}", empty_fig - - def _determine_severity(self, labels: List[str]) -> str: - """Determines issue severity based on labels using predefined rules.""" - labels_lower = {label.lower().strip() for label in labels} - for severity, keywords in self.severity_rules.items(): - if any(keyword in label for label in labels_lower for keyword in keywords): - return severity - return "Unknown" - - def _generate_stats_plot(self, severity_counts: Dict[str, int]) -> go.Figure: - """Generates a Plotly bar chart for issue severity distribution.""" - filtered_counts = {k: v for k, v in severity_counts.items() if v > 0} - if not filtered_counts: - fig = go.Figure() - fig.update_layout(title="Issue Severity Distribution", xaxis={"visible": False}, yaxis={"visible": False}, - # FIX: Corrected dictionary syntax for font size - annotations=[{"text": "No issues to display.", "xref": "paper", "yref": "paper", "showarrow": False, "font": {"size": 16}}], - plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)') - return fig # Return the empty figure here - - severities = list(filtered_counts.keys()) - counts = list(filtered_counts.values()) - order = ['Critical', 'High', 'Medium', 'Low', 'Unknown'] - # Sort severities based on the predefined order - severities_sorted = sorted(severities, key=lambda x: order.index(x) if x in order else len(order)) - counts_sorted = [filtered_counts[s] for s in severities_sorted] - - fig = px.bar(x=severities_sorted, y=counts_sorted, title="Issue Severity Distribution", - labels={'x': 'Severity', 'y': 'Number of Issues'}, color=severities_sorted, - color_discrete_map={'Critical': '#DC2626', 'High': '#F97316', 'Medium': '#FACC15', 'Low': '#84CC16', 'Unknown': '#6B7280'}, - text=counts_sorted) - fig.update_layout(xaxis_title=None, yaxis_title="Number of Issues", plot_bgcolor='rgba(0,0,0,0)', - paper_bgcolor='rgba(0,0,0,0)', showlegend=False, - xaxis={'categoryorder':'array', 'categoryarray': order}, - yaxis={'rangemode': 'tozero'}) # Ensure y-axis starts at 0 - fig.update_traces(textposition='outside') - return fig - - async def _cluster_similar_issues(self): - """Generates embeddings and clusters issues using HDBSCAN. Uses self.issue_list_for_clustering.""" - if not self.issue_list_for_clustering: - logger.warning("Cannot cluster issues: No issues loaded or list is empty.") - self.issue_clusters = {} - self._webhook_change_count = 0 # Reset on empty list - self.needs_recluster = False - return - if not self.hf_token or HF_EMBEDDING_MODEL is None: - logger.error("Cannot cluster issues: Hugging Face token or embedding model missing.") - self.issue_clusters = {} - self._webhook_change_count = 0 # Reset on missing token/model - self.needs_recluster = False - return - - num_issues = len(self.issue_list_for_clustering) - logger.info(f"Generating embeddings for {num_issues} issues for clustering using {HF_EMBEDDING_MODEL}...") - try: - # Use title + a snippet of the body for embedding - texts_to_embed = [ - f"Title: {i.get('title','')} Body: {i.get('body','')[:500]}" # Limit body length - for i in self.issue_list_for_clustering - ] - embeddings = await self._generate_embeddings(texts_to_embed) - - if embeddings is None or not isinstance(embeddings, list) or len(embeddings) != num_issues: - logger.error(f"Failed to generate valid embeddings for clustering. Expected {num_issues}, got {type(embeddings)} len {len(embeddings) if embeddings else 'N/A'}.") - self.issue_clusters = {} - self._webhook_change_count = 0 # Reset on embedding failure - self.needs_recluster = False - return - - logger.info(f"Generated {len(embeddings)} embeddings. Running HDBSCAN clustering...") - # Adjust min_cluster_size dynamically based on issue count? - min_cluster_size = max(2, min(5, num_issues // 10)) # Example: min 2, max 5, or 10% of issues - clusterer = HDBSCAN(min_cluster_size=min_cluster_size, metric='cosine', allow_single_cluster=True, gen_min_span_tree=True) - clusters = clusterer.fit_predict(embeddings) - - new_issue_clusters: Dict[int, List[int]] = {} - noise_count = 0 - for i, cluster_id in enumerate(clusters): - cluster_id_int = int(cluster_id) - if cluster_id_int == -1: - noise_count += 1 - continue - if cluster_id_int not in new_issue_clusters: - new_issue_clusters[cluster_id_int] = [] - new_issue_clusters[cluster_id_int].append(i) - - self.issue_clusters = new_issue_clusters - logger.info(f"Clustering complete. Found {len(self.issue_clusters)} clusters (min size {min_cluster_size}) with {noise_count} noise points.") - - # Reset the change counter and flag after successful clustering - self._webhook_change_count = 0 - self.needs_recluster = False - logger.debug("Reset webhook change counter and recluster flag after clustering.") - - except Exception as e: - logger.exception(f"Error during issue clustering: {e}") - self.issue_clusters = {} - self._webhook_change_count = 0 # Reset on clustering failure - self.needs_recluster = False - - - def _identify_potential_duplicates(self): - """Populates self.potential_duplicates based on self.issue_clusters and self.issue_list_for_clustering.""" - self.potential_duplicates = {} - if not self.issue_clusters or not self.issue_list_for_clustering: - logger.debug("Skipping duplicate identification: No clusters or issue list.") - return - - index_to_id = {} - try: - for i, issue in enumerate(self.issue_list_for_clustering): - issue_id = issue.get('id') - if issue_id is None: - logger.warning(f"Issue at index {i} in clustering list is missing an ID.") - continue - index_to_id[i] = issue_id - except Exception as e: - logger.error(f"Error creating index-to-ID map for duplicate check: {e}. Issue list might be inconsistent.") - return - - for cluster_id, indices in self.issue_clusters.items(): - if len(indices) > 1: - # Get issue IDs for indices in this cluster, skipping any invalid indices - cluster_issue_ids = [index_to_id[i] for i in indices if i in index_to_id] - if len(cluster_issue_ids) > 1: # Ensure there's more than one valid issue ID in the cluster - for issue_id in cluster_issue_ids: - # For each issue in the cluster, list all *other* issues in the same cluster as potential duplicates - self.potential_duplicates[issue_id] = [other_id for other_id in cluster_issue_ids if other_id != issue_id] - - logger.info(f"Identified potential duplicates for {len(self.potential_duplicates)} issues based on clustering.") - - async def _generate_embeddings(self, texts: List[str]): - """Generates sentence embeddings using Hugging Face Inference API.""" - if not self.hf_token: - logger.error("Hugging Face token is not set. Cannot generate embeddings.") - return None - if not texts: - logger.warning("Embedding generation requested with empty text list.") - return [] - if HF_EMBEDDING_MODEL is None: - logger.error("HF Embedding model is not configured.") - return None - - model_id = HF_EMBEDDING_MODEL # Use the fixed embedding model - api_url = f"{HF_INFERENCE_API}/{model_id}" - headers = {"Authorization": f"Bearer {self.hf_token}"} - timeout = aiohttp.ClientTimeout(total=180) # Increased timeout for embedding large batches - - logger.info(f"Requesting embeddings from {api_url} for {len(texts)} texts.") - # HF Inference API has a limit on the number of inputs per request (often 512 or 1024) - # Batching is recommended for large lists of texts. - batch_size = 500 # Example batch size, adjust based on model limits if known - all_embeddings = [] - - for i in range(0, len(texts), batch_size): - batch_texts = texts[i:i + batch_size] - payload = {"inputs": batch_texts, "options": {"wait_for_model": True}} - logger.debug(f"Processing embedding batch {i//batch_size + 1}/{(len(texts)-1)//batch_size + 1} ({len(batch_texts)} texts)") - - # Implement retry logic for batches - retries = 3 - for attempt in range(retries): - try: - async with aiohttp.ClientSession(headers=headers, timeout=timeout) as session: - async with session.post(api_url, json=payload) as response: - rate_limit_remaining = response.headers.get('X-Ratelimit-Remaining') - logger.debug(f"HF Embedding API Response Status: {response.status}, RateLimit Remaining: {rate_limit_remaining}") - - if response.status == 429: # Too Many Requests - retry_after = int(response.headers.get('Retry-After', 10)) - logger.warning(f"HF Embedding API rate limited. Waiting for {retry_after} seconds before retry {attempt + 1}/{retries}.") - await asyncio.sleep(retry_after) - continue # Retry the same batch - response.raise_for_status() # Raise for other 4xx/5xx errors - - result = await response.json() - - if isinstance(result, list) and all(isinstance(emb, list) and all(isinstance(f, float) for f in emb) for emb in result): - if len(result) == len(batch_texts): - all_embeddings.extend(result) - logger.debug(f"Successfully received {len(result)} embeddings for batch.") - break # Batch successful, move to next batch - else: - logger.error(f"HF Embedding API returned wrong number of embeddings for batch: Got {len(result)}, expected {len(batch_texts)}.") - return None # Indicate failure - elif isinstance(result, dict) and 'error' in result: - error_msg = result['error'] - estimated_time = result.get('estimated_time') - logger.error(f"HF Inference API embedding error on batch: {error_msg}" + (f" (Estimated time: {estimated_time}s)" if estimated_time else "")) - return None # Indicate failure - else: - logger.error(f"Unexpected embedding format received on batch: Type={type(result)}. Response: {str(result)[:500]}") - return None # Indicate failure - - except asyncio.TimeoutError: - logger.warning(f"HF Inference API embedding request timed out after {timeout.total} seconds for batch. Retry {attempt + 1}/{retries}.") - if attempt < retries - 1: - await asyncio.sleep(5) # Wait a bit before retrying timeout - continue - else: - logger.error("Max retries reached for embedding batch timeout.") - return None # Indicate failure - except aiohttp.ClientResponseError as e: - error_body = await e.text() - logger.error(f"HF Inference API embedding request failed on batch: Status={e.status}, Message='{e.message}'. Body: {error_body[:500]}. Retry {attempt + 1}/{retries}.") - if attempt < retries - 1 and e.status in [500, 502, 503, 504]: # Retry on server errors - await asyncio.sleep(5) - continue - else: - logger.error("Max retries reached or non-retryable error for embedding batch.") - return None # Indicate failure - except Exception as e: - logger.exception(f"Unexpected error during embedding generation on batch: {e}. Retry {attempt + 1}/{retries}.") - if attempt < retries - 1: - await asyncio.sleep(5) - continue - else: - logger.error("Max retries reached for unexpected error during embedding batch.") - return None # Indicate failure - else: # This else block executes if the inner loop completes without a 'break' (i.e., all retries failed) - logger.error(f"Failed to process embedding batch after {retries} retries.") - return None # Indicate failure - - await asyncio.sleep(0.1) # Small delay between batches - - if len(all_embeddings) == len(texts): - logger.info(f"Successfully generated embeddings for all {len(all_embeddings)} texts.") - return all_embeddings - else: - logger.error(f"Embedding generation failed partway through. Expected {len(texts)}, got {len(all_embeddings)}.") - return None # Indicate overall failure - - - async def generate_code_patch(self, issue_number: int, model_key: str) -> dict: - """Generates a code patch suggestion using a selected AI model.""" - if issue_number not in self.issues: - return {"error": f"Issue {issue_number} not found."} - if not self.hf_token: - return {"error": "Hugging Face token not set."} - if model_key not in HF_MODELS or HF_MODELS.get(model_key) is None: - return {"error": f"Invalid or unconfigured model key: {model_key}"} - if not self.repo_local_path or not self.repo: - return {"error": "Repository not cloned/available locally. Please scan the repository first."} - - issue = self.issues[issue_number] - model_id = HF_MODELS[model_key] - logger.info(f"Generating patch for issue {issue_number} ('{issue.get('title', 'N/A')[:50]}...') using model {model_id}") - - # --- Context Gathering --- - context_str = "Context gathering failed or not available." - context_source = "Error" - start_time_context = time.time() - context_data = self.precomputed_context.get(issue_number) # Use .get for safety - - if context_data: - timestamp = context_data.get('timestamp', 0) - timestamp_str = datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M:%S') - if context_data.get("error"): - context_str = f"Pre-computed context retrieval failed: {context_data['error']}" - context_source = f"Pre-computed (Failed @ {timestamp_str})" - elif context_data.get("content"): - context_str = context_data["content"] - num_files = len(context_data.get('files',[])) - context_source = f"Pre-computed ({num_files} files @ {timestamp_str})" - else: - context_str = "Pre-computed context was empty or unavailable." - context_source = f"Pre-computed (Empty @ {timestamp_str})" - logger.info(f"Using pre-computed context for issue {issue_number} (Source: {context_source})") - else: - logger.info(f"No pre-computed context found for issue {issue_number}, computing now.") - context_source = "Computed On-Demand" - # Compute context on demand and store it - context_result = await self._get_code_context(issue) - self.precomputed_context[issue_number] = { - "content": context_result.get("content"), - "files": context_result.get("files", []), - "error": context_result.get("error"), - "timestamp": time.time() +app = Flask(__name__) + +# HTML template (simplified version of your provided HTML) +HTML_TEMPLATE = ''' + + + + + + AI Issue Resolver Pro + + + + + + +
+
+

AI Issue Resolver Pro

+

Collaborative Issue Resolution Powered by AI

+
+ +
+
+ + +
+ +
+ + +
+ +
+ + +
+ +
+ + +
+ +
+ +
+
+ +
+ Status updates appear here... Idle tasks may run in background. +
- # --- Analytics Helper --- - def update_cluster_analytics(mgr: IssueManager): - """Generates data for the cluster analytics dataframe.""" - if not mgr.issue_clusters or not mgr.issue_list_for_clustering: - return [["N/A", 0, "No clusters found"]] - - cluster_data = [] - # Expanded stop words list (lowercase) - stop_words = set("a an the is are was were be been being has have had do does did will would shall should can could may might must it its this that these those there their then than and or but if because as at by for with without about against between into through during before after above below to from up down in out on off over under again further then once here there when where why how all any both each few more most other some such no nor not only own same so than too very s t can will just don should now d ll m o re ve yo ain aren couldn didn doesn isn it's mustn ouren shan shouldn wasn weren won wouldn".split()) - # Add common code/issue terms (lowercase) - stop_words.update({'issue', 'bug', 'error', 'fix', 'feat', 'chore', 'refactor', 'docs', 'test', 'file', 'line', 'code', 'when', 'user', 'report', 'problem', 'need', 'want', 'get', 'use', 'try', 'make', 'add', 'remove', 'change', 'update', 'create', 'build', 'run', 'start', 'stop', 'click', 'button', 'page', 'app', 'data', 'system', 'service', 'component', 'module', 'function', 'class', 'method', 'variable', 'value', 'string', 'number', 'list', 'dict', 'object', 'array', 'true', 'false', 'null', 'none', 'type', 'size', 'color', 'style', 'width', 'height', 'margin', 'padding', 'border', 'display', 'position', 'float', 'clear', 'overflow', 'index', 'key', 'value', 'id', 'name', 'text', 'html', 'css', 'js', 'py', 'java', 'c', 'cpp', 'h', 'hpp', 'go', 'rs', 'php', 'rb', 'json', 'yaml', 'xml', 'sql', 'log', 'config', 'setup', 'install', 'version', 'release', 'branch', 'commit', 'pull', 'request', 'merge', 'diff', 'patch', 'context', 'suggestion', 'analysis', 'missing', 'information', 'duplicate', 'potential', 'cluster', 'severity', 'label', 'assignee', 'state', 'title', 'body', 'url', 'created', 'updated', 'time', 'day', 'week', 'month', 'year', 'ago', 'now', 'new', 'old', 'different', 'same', 'similar', 'group', 'count', 'distribution', 'analytics', 'overview', 'studio', 'board', 'resolution', 'collaborative', 'editor', 'context', 'aware', 'assistance', 'tools', 'output', 'patch', 'steps', 'approach', 'plan', 'identify', 'propose', 'recommendation', 'workflow', 'standard', 'important', 'critical', 'high', 'medium', 'low', 'unknown', 'none', 'needed', 'analysis', 'hypothesis', 'preliminary', 'relevant', 'area', 'investigation', 'implementation', 'testing', 'next'}) - - - def get_top_keywords(indices): - text = "" - for idx in indices: - # Ensure index is valid for the current issue list snapshot - if 0 <= idx < len(mgr.issue_list_for_clustering): - issue = mgr.issue_list_for_clustering[idx] - text += issue.get('title', '') + " " + issue.get('body', '')[:500] + " " # Use more body text - text = text.lower() - # Remove punctuation - text = text.translate(str.maketrans('', '', string.punctuation)) - # Split into words and filter - words = [w for w in text.split() if len(w) > 2 and w not in stop_words] # Min word length 3 - if not words: return "N/A" - counts = Counter(words) - # Get top 5 most common words - top_5 = [word for word, count in counts.most_common(5)] - return ", ".join(top_5) - - # Sort clusters by size (descending) - sorted_clusters = sorted(mgr.issue_clusters.items(), key=lambda item: len(item[1]), reverse=True) - - # Limit to top N clusters for display - top_n_clusters = 10 # Display top 10 clusters - cluster_data = [] - for cluster_id, indices in sorted_clusters[:top_n_clusters]: - keywords = get_top_keywords(indices) - cluster_data.append([cluster_id, len(indices), keywords]) - - if not cluster_data: - return [["N/A", 0, "No clusters found"]] - - return cluster_data - - # --- Gradio Blocks --- - with gr.Blocks(theme=theme, title="AI Issue Resolver Pro", css=""" - #collab-list .collab-item { margin-bottom: 4px; font-size: 0.9em; } - .gradio-container { max-width: 1600px !important; } - #issue_preview_div { max-height: 80vh; overflow-y: auto; } /* Ensure preview is scrollable */ - #ai_output_md { max-height: 60vh; overflow-y: auto; } /* Ensure AI output is scrollable */ - #code_editor_component { min-height: 500px; height: 70vh; } /* Give editor more space */ - #ai_tools_accordion > .label { background-color: #f0f9ff; } /* Light blue background for tools header */ - #ai_tools_accordion.closed > .label { background-color: #f0f9ff; } /* Keep background when closed */ - #ai_tools_accordion > .label:hover { background-color: #e0f2fe; } /* Hover effect */ - #ai_tools_accordion > .label > .icon { color: #0ea5e9; } /* Tool icon color */ - .panel { border: 1px solid #e5e7eb; border-radius: 8px; padding: 15px; background-color: #f9fafb; } /* Styled panel */ - #config-panel { margin-bottom: 20px; } - #status_output_txt textarea { font-family: monospace; font-size: 0.9em; background-color: #eef; } /* Style status bar */ - .gradio-dataframe-container { overflow-x: auto; } /* Ensure dataframe is scrollable horizontally */ - #issue_list_df table { width: 100%; } /* Make dataframe table use full width */ - #issue_list_df th, #issue_list_df td { white-space: nowrap; overflow: hidden; text-overflow: ellipsis; } /* Prevent text wrapping in table headers/cells */ - #issue_list_df td:nth-child(1) { width: 80px; min-width: 80px; } /* Fix ID column width */ - #issue_list_df td:nth-child(2) { width: 60%; max-width: 400px; } /* Give Title column more space */ - #issue_list_df td:nth-child(3) { width: 15%; min-width: 100px; } /* Severity */ - #issue_list_df td:nth-child(4) { width: 15%; min-width: 80px; } /* Cluster */ - .gradio-dataframe-container table td { cursor: pointer; } /* Indicate rows are clickable */ - - - """) as demo_app: - gr.Markdown(""" -
-

🚀 AI Issue Resolver Pro

-

Collaborative Issue Resolution Powered by AI

+
+
📋 Issue Board
+
💻 Resolution Studio
+
📈 Analytics
- """) - - # Use a hidden textbox to reliably pass the selected issue ID to JS - selected_issue_id_hidden = gr.Textbox(visible=False, value="", elem_id="selected_issue_id_hidden") - - with gr.Row(variant="panel", elem_id="config-panel") as config_row: - with gr.Column(scale=3): - repo_url = gr.Textbox(label="GitHub Repository URL", placeholder="https://github.com/owner/repo", info="Enter the full URL.", elem_id="repo_url_inp") - with gr.Row(): - github_token = gr.Textbox(label="GitHub Token (Optional)", type="password", placeholder="ghp_...", info="For private repos or higher rate limits.", elem_id="github_token_inp") - hf_token = gr.Textbox(label="Hugging Face Token", type="password", placeholder="hf_...", info="Required for AI features.", elem_id="hf_token_inp") - with gr.Column(scale=1, min_width=250): - model_select = gr.Dropdown(choices=list(HF_MODELS.keys()), value=DEFAULT_MODEL_KEY, - label="🤖 Select AI Model", info="Used for suggestions & patches.", elem_id="model_select_dd", - interactive=bool(HF_MODELS)) # Disable if no models configured - crawl_btn = gr.Button("🛰️ Scan Repository Issues", variant="primary", icon="🔍", elem_id="crawl_btn") - status_output = gr.Textbox(label="Status Log", interactive=False, lines=1, max_lines=1, - placeholder="Status updates appear here... Idle tasks may run in background.", - elem_id="status_output_txt") - - with gr.Tabs(elem_id="main-tabs"): - with gr.Tab("📋 Issue Board", id="board", elem_id="tab-board"): - with gr.Row(equal_height=False): - with gr.Column(scale=3): - gr.Markdown("### Open Issues (Select Row to View/Edit)") - issue_list = gr.Dataframe( - headers=["ID", "Title", "Severity", "Cluster"], - datatype=["number", "str", "str", "str"], - interactive=True, - row_count=(10, "dynamic"), # Show fewer rows initially - col_count=(4, "fixed"), - wrap=True, - elem_id="issue_list_df", - label="Issues", - value=[] # Start with empty list - ) - with gr.Column(scale=2, min_width=350): - gr.Markdown("### Issue Severity Distribution") - stats_plot = gr.Plot(label="Severity Plot", elem_id="stats_plot_viz", value=manager._generate_stats_plot({})) # Initialize with empty plot - collab_status = gr.HTML(""" -
-

👥 Active Collaborators

-
- Connecting... + +
+
+
+
+
+
Open Issues
+
+ + + + + + + + + + + + +
IDTitleSeverityCluster
+
+
+ +
+
+
+
Issue Severity Distribution
+
+
+
+ +
+
+
👥 Active Collaborators
+
+
+
+ User_abc1: Viewing Issue #123 +
+
+ User_def2: Editing Issue #124 +
+
+ User_ghi3: Idle
- """, elem_id="collab_status_html") - - with gr.Tab("💻 Resolution Studio", id="studio", elem_id="tab-studio"): - with gr.Row(equal_height=False): - with gr.Column(scale=1, min_width=450): - gr.Markdown("### Selected Issue Details") - issue_preview_html = gr.HTML("

Select an issue from the 'Issue Board' tab.

", elem_id="issue_preview_div") - - with gr.Accordion("🛠️ AI Assistance Tools", open=True, elem_id="ai_tools_accordion"): - suggest_btn = gr.Button("🧠 Suggest Resolution Steps", icon="💡", elem_id="suggest_btn", interactive=bool(HF_MODELS)) - patch_btn = gr.Button("📝 Generate Code Patch", icon="🩹", elem_id="patch_btn", interactive=bool(HF_MODELS)) - - gr.Markdown("### AI Output") - # Use a Markdown component with scrollability - ai_output_display = gr.Markdown(value="*AI suggestions and patches will appear here...*", elem_id="ai_output_md") - with gr.Row(): - copy_patch_btn = gr.Button("📋 Copy Patch", elem_id="copy_patch_btn", visible=False) # Initially hidden - clear_ai_output_btn = gr.Button("🧹 Clear Output", elem_id="clear_ai_output_btn") - - - with gr.Column(scale=2, min_width=600): - gr.Markdown("### Collaborative Code Editor (Context-Aware)") - gr.Markdown("

⚠️ Warning: Real-time collaborative editing is experimental and may lose data with simultaneous edits. Use with caution and save work frequently!

") - # Initialize with placeholder content - code_edit_component = code_editor( - label="Code Context / Editor", - language="python", # Default language, can be changed based on file extension in JS - interactive=True, - elem_id="code_editor_component", - value={"placeholder.txt": "# Select an issue to load relevant code context."} - ) - - with gr.Tab("📈 Analytics", id="analytics", elem_id="tab-analytics"): - gr.Markdown("### Repository Analytics") - with gr.Row(equal_height=False): - with gr.Column(scale=1): - gr.Markdown("#### Issue Severity Distribution") - # Initialize with empty plot, will be updated after crawl - analytics_severity_plot = gr.Plot(label="Severity Distribution (Analytics)", elem_id="analytics_severity_plot", value=manager._generate_stats_plot({})) - with gr.Column(scale=1): - gr.Markdown("#### Issue Cluster Analysis (Top Clusters)") - cluster_info_df = gr.Dataframe( - headers=["Cluster ID", "Issue Count", "Top Keywords (Example)"], - datatype=["number", "number", "str"], - value=[["Scan a repository to see cluster data.", 0, ""]], # Initial placeholder data - label="Issue Clusters", elem_id="cluster_info_df", - interactive=False, # Make this dataframe non-interactive - row_count=(5, "dynamic"), - col_count=(3, "fixed"), - wrap=True - ) - gr.Markdown("*(Analytics update after scanning the repository. More detailed analytics could be added.)*") - - # --- Event Handlers --- - # The crawl button updates the issue list, stats plot, status, and analytics plot - crawl_btn.click( - fn=manager.crawl_issues, - inputs=[repo_url, github_token, hf_token], - outputs=[issue_list, stats_plot, status_output, analytics_severity_plot], - api_name="crawl_issues", - show_progress="full" - ).then( - # After crawl_issues completes, update the cluster analytics dataframe - fn=lambda: update_cluster_analytics(manager), - inputs=[], - outputs=[cluster_info_df] - ) - - # The issue list selection updates the preview, code editor, AI output area, and hidden state - issue_list.select( - fn=handle_issue_select, - # Pass the event data, which contains the selected row's value (including ID) - inputs=[gr.SelectData()], - outputs=[selected_issue_id_hidden, issue_preview_html, code_edit_component, ai_output_display, copy_patch_btn], - show_progress="minimal", - # Trigger the JS function to update the tracked issue ID and editor listeners - # This is handled by the MutationObserver and reading the hidden input value in JS - ) - - # AI Suggestion button - suggest_btn.click( - fn=get_ai_suggestion_wrapper, - inputs=[selected_issue_id_hidden, model_select], # Read selected issue ID from hidden state - outputs=[ai_output_display], - api_name="suggest_resolution", - show_progress="full" - ).then( - # After getting suggestion, hide the copy patch button - fn=lambda: gr.update(visible=False), - inputs=[], - outputs=[copy_patch_btn] - ) - - # AI Patch button - patch_btn.click( - fn=get_ai_patch_wrapper, - inputs=[selected_issue_id_hidden, model_select], # Read selected issue ID from hidden state - outputs=[ai_output_display], - api_name="generate_patch", - show_progress="full" - ).then( - # After getting patch, check if it contains a diff block and show the copy button if so - # Use a lambda to check the output text - fn=lambda output_text: gr.update(visible="```diff" in output_text), - inputs=[ai_output_display], - outputs=[copy_patch_btn] - ) - - # Clear AI Output button - clear_ai_output_btn.click( - fn=lambda: ["*AI suggestions and patches will appear here...*", gr.update(visible=False)], - inputs=[], - outputs=[ai_output_display, copy_patch_btn] - ) - - # --- JavaScript for WebSocket Communication and UI Interaction --- - def web_socket_js(ws_port, gradio_port): - # Generate a unique client ID on page load - # Note: This JS is generated *once* when the Gradio app is created. - # The actual client ID is generated and logged when the JS runs in the browser. - # The Python-side logging here is just for context during app startup. - temp_client_id_placeholder = f"client_{hashlib.sha1(os.urandom(16)).hexdigest()[:8]}" - logger.info(f"Generating JS with placeholder Client ID: {temp_client_id_placeholder}") - - return f""" - - """ - # The _js parameter injects the JavaScript code into the Gradio page - demo_app.load(_js=web_socket_js(WS_PORT, GRADIO_PORT), fn=None, inputs=None, outputs=None) - - return demo_app - -# ========== WebSocket Server Logic ========== -async def handle_ws_connection(websocket: WebSocketServerProtocol, path: str, manager: IssueManager): - """Handles incoming WebSocket connections and messages for collaboration.""" - # Generate a client ID and attach it to the websocket object - client_id = f"client_{hashlib.sha1(os.urandom(16)).hexdigest()[:8]}" - setattr(websocket, 'client_id', client_id) - remote_addr = websocket.remote_address - logger.info(f"WebSocket client connected: {remote_addr} assigned ID {client_id}") - - # Add the new client to the list of active clients - manager.ws_clients.append(websocket) - logger.info(f"Client list size: {len(manager.ws_clients)}") +
+
+
+
+
+
+
+
+
+
Selected Issue Details
+
+
+

Select an issue from the 'Issue Board' tab.

+
+
+ +
+
+
🛠️ AI Assistance Tools
+ +
+
+
+ + +
+
+
+ +
+
+
AI Output
+
+
+

AI suggestions and patches will appear here...

+
+
+
+ +
+
+
+
Collaborative Code Editor (Context-Aware)
+
+
+

Warning

+

Real-time collaborative editing is experimental and may lose data with simultaneous edits. Use with caution and save work frequently!

+
+
+

# Select an issue to load relevant code context.

+
+
+
+
+
+ +
+
+
+
Repository Analytics
+
+ +
+
+

Issue Severity Distribution

+
+
+ +
+

Issue Cluster Analysis (Top Clusters)

+ + + + + + + + + + + + + + + + + + + + + + + + + +
Cluster IDIssue CountTop Keywords
115authentication, login, session
28performance, slow, response
35documentation, api, update
+
+
+ +

Analytics update after scanning the repository. More detailed analytics could be added.

+
+
+
+ + + + +''' + +def extract_owner_repo(url): + """Extract owner and repository name from GitHub URL""" + pattern = r"github\.com/([^/]+)/([^/]+)" + match = re.search(pattern, url) + if match: + owner, repo = match.groups() + # Remove .git suffix if present + if repo.endswith('.git'): + repo = repo[:-4] + return owner, repo + return None, None + +def get_github_issues(owner, repo, token=None): + """Fetch open issues from a GitHub repository""" + url = f"https://api.github.com/repos/{owner}/{repo}/issues" + headers = { + "Accept": "application/vnd.github.v3+json" + } + + if token: + headers["Authorization"] = f"token {token}" + + params = { + "state": "open", + "per_page": 100 + } + try: - # Wait for the first message (expected to be 'join') or other messages - async for message in websocket: - try: - # Ensure message is bytes or string before decoding/parsing - if isinstance(message, bytes): - message = message.decode('utf-8') - if not isinstance(message, str): - logger.warning(f"Received non-string/bytes message from {client_id}: {message!r}") - continue - - data = json.loads(message) - msg_type = data.get("type") - # Use the client_id assigned by the server, not one sent by the client, for security - sender_id = client_id - - logger.debug(f"Received WS message type '{msg_type}' from {sender_id} ({remote_addr})") - - if msg_type == "join": - # Store collaborator info when they explicitly join - # Use the name provided by the client, default if not provided - client_name = data.get("name", f"User_{sender_id[:4]}") - # Ensure name is a string and not too long - client_name = str(client_name)[:50] if client_name else f"User_{sender_id[:4]}" - - if sender_id in manager.collaborators: - # Update existing entry if client reconnects or sends join again - manager.collaborators[sender_id].update({"name": client_name, "status": "Connected"}) - logger.info(f"Client {sender_id} ({client_name}) updated status to Connected.") - else: - # Add new entry - manager.collaborators[sender_id] = {"name": client_name, "status": "Connected"} - logger.info(f"Client {sender_id} ({client_name}) joined collaboration. Current collaborators: {list(manager.collaborators.keys())}") - - # Broadcast updated status list to all clients - await manager.broadcast_collaboration_status_once() - - elif msg_type == "code_update": - issue_num = data.get("issue_num") - delta_str = data.get("delta") - # Ensure data is valid and sender ID matches - if issue_num is not None and delta_str is not None and sender_id == client_id: - # FIX: Corrected call - handle_ws_connection is already async, just await the async manager method - await manager.handle_code_editor_update(int(issue_num), delta_str, sender_id) - else: - logger.warning(f"Invalid or unauthorized 'code_update' message from {sender_id}: Missing issue_num/delta or sender mismatch. Data: {str(data)[:200]}") - - elif msg_type == "status_update": - status = data.get("status", "Idle") - # Only update status for the client ID that sent the message - if sender_id == client_id: - # Ensure status is a string and not too long - status = str(status)[:100] if status else "Idle" - - if sender_id in manager.collaborators: - manager.collaborators[sender_id]["status"] = status - # Broadcast updated status list - await manager.broadcast_collaboration_status_once() - else: - # This might happen if 'join' wasn't received first, or state is out of sync - logger.warning(f"Received status update from client {sender_id} not in collaborator list. Adding/Updating with default name.") - manager.collaborators[sender_id] = {"name": f"User_{sender_id[:4]} (Re-added)", "status": status} - await manager.broadcast_collaboration_status_once() - else: - logger.warning(f"Unauthorized status update from {sender_id} attempting to update status for another client. Ignoring.") - - - else: - logger.warning(f"Unknown WebSocket message type '{msg_type}' received from {sender_id} ({remote_addr}). Message: {str(message)[:200]}") - - except json.JSONDecodeError: - logger.error(f"Received invalid JSON over WebSocket from {client_id} ({remote_addr}): {str(message)[:200]}...") - except Exception as e: - logger.exception(f"Error processing WebSocket message from {client_id} ({remote_addr}): {e}") - - # Catch standard socket exceptions for disconnects - except (ConnectionClosed, ConnectionClosedOK, ConnectionAbortedError, ConnectionResetError, WebSocketException) as e: - logger.info(f"WebSocket client {client_id} ({remote_addr}) disconnected: Type={type(e).__name__}, Code={getattr(e, 'code', 'N/A')}, Reason='{getattr(e, 'reason', 'N/A')}'") - except Exception as e: - logger.exception(f"Unexpected error in WebSocket handler for {client_id} ({remote_addr}): {e}") - finally: - # Ensure cleanup happens regardless of how the loop exits - logger.info(f"Cleaning up connection for client {client_id} ({remote_addr})") - # Pass the websocket object itself for removal - # Schedule this in the main loop if not already in it - if manager.main_loop.is_running(): - manager.main_loop.call_soon_threadsafe(manager.remove_ws_client, websocket) + response = requests.get(url, headers=headers, params=params) + response.raise_for_status() + return response.json() + except requests.exceptions.RequestException as e: + raise Exception(f"Failed to fetch issues: {str(e)}") + +def classify_issue_severity(title, body): + """Simple rule-based severity classification""" + text = (title + " " + (body or "")).lower() + + critical_keywords = ['crash', 'critical', 'fail', 'broken', 'security', 'vulnerability'] + high_keywords = ['error', 'bug', 'performance', 'slow'] + medium_keywords = ['improve', 'enhancement', 'feature', 'request'] + low_keywords = ['documentation', 'typo', 'minor'] + + for keyword in critical_keywords: + if keyword in text: + return 'Critical' + + for keyword in high_keywords: + if keyword in text: + return 'High' + + for keyword in medium_keywords: + if keyword in text: + return 'Medium' + + for keyword in low_keywords: + if keyword in text: + return 'Low' + + return 'Unknown' + +def cluster_issues(issues): + """Simple clustering based on keywords in titles""" + clusters = {} + cluster_id = 1 + + for issue in issues: + title = issue['title'].lower() + # Extract potential cluster keywords + if 'auth' in title or 'login' in title or 'session' in title: + cluster = 1 + elif 'performance' in title or 'slow' in title or 'speed' in title: + cluster = 2 + elif 'doc' in title or 'readme' in title or 'documentation' in title: + cluster = 3 else: - logger.warning("Main loop not running, cannot schedule final client removal.") - - -async def start_websocket_server(manager: IssueManager, port: int): - """Starts the WebSocket server.""" - # The handler needs the manager instance - handler_with_manager = lambda ws, path: handle_ws_connection(ws, path, manager) - server = None - # Use a Future to signal when the server should stop - stop_event = asyncio.Future() - - # Add a method to signal the server to stop from outside the async function - # This is needed for graceful shutdown from the main thread - manager.stop_ws_server = lambda: stop_event.set_result(True) if not stop_event.done() else None - + cluster = cluster_id + cluster_id += 1 + + issue['cluster'] = cluster + if cluster not in clusters: + clusters[cluster] = [] + clusters[cluster].append(issue) + + return issues, len(clusters) + +@app.route('/') +def index(): + return render_template_string(HTML_TEMPLATE) + +@app.route('/scan_issues', methods=['POST']) +def scan_issues(): try: - # Start the websockets server - server = await websockets.serve( - handler_with_manager, - "0.0.0.0", # Listen on all interfaces - port, - ping_interval=20, # Send ping every 20 seconds - ping_timeout=20 # Close connection if no pong received within 20 seconds - ) - logger.info(f"WebSocket server started successfully on ws://0.0.0.0:{port}") - - # Wait until the stop_event is set (signaled from main thread or shutdown) - await stop_event - - except OSError as e: - logger.error(f"Failed to start WebSocket server on port {port}: {e}. Is the port already in use?") - # Signal the main loop to stop gracefully if possible, or re-raise - # If this happens during startup, main thread will catch it and trigger shutdown. - # No need to explicitly call shutdown_handler here, the main thread's except/finally will handle it. - raise SystemExit(f"WebSocket Port {port} unavailable. Application cannot start.") from e - except asyncio.CancelledError: - logger.info("WebSocket server task cancelled.") + data = request.get_json() + repo_url = data.get('repo_url') + github_token = data.get('github_token') + + if not repo_url: + return jsonify({'error': 'Repository URL is required'}), 400 + + owner, repo = extract_owner_repo(repo_url) + if not owner or not repo: + return jsonify({'error': 'Invalid GitHub URL format'}), 400 + + # Fetch issues from GitHub + github_issues = get_github_issues(owner, repo, github_token) + + # Process issues + processed_issues = [] + for issue in github_issues: + if 'pull_request' not in issue: # Skip pull requests + processed_issues.append({ + 'number': issue['number'], + 'title': issue['title'], + 'body': issue['body'], + 'severity': classify_issue_severity(issue['title'], issue['body']) + }) + + # Cluster issues + clustered_issues, cluster_count = cluster_issues(processed_issues) + + # Calculate severity distribution + severity_counter = Counter(issue['severity'] for issue in clustered_issues) + + return jsonify({ + 'issues': clustered_issues, + 'total_issues': len(clustered_issues), + 'clusters': cluster_count, + 'severity_distribution': dict(severity_counter) + }) + except Exception as e: - logger.exception(f"An unexpected error occurred starting or running the WebSocket server: {e}") - # Ensure the stop event is set so the await completes - if not stop_event.done(): stop_event.set_result(True) - raise # Re-raise to potentially stop the main loop - - finally: - if server: - logger.info("Attempting to stop WebSocket server...") - server.close() # Signal server to close - await server.wait_closed() # Wait for server to finish closing connections - logger.info("WebSocket server stopped.") - # Ensure the stop event is completed even if there was an error before await - if not stop_event.done(): - stop_event.set_result(True) - - -def run_webhook_server(manager: IssueManager, port: int, main_loop: asyncio.AbstractEventLoop): - """Starts the HTTP webhook server in a separate thread.""" - # Pass the manager instance and the main asyncio loop reference to the handler class - WebhookHandler.manager_instance = manager - WebhookHandler.main_loop = main_loop - httpd = None - - # Add a method to signal the webhook server thread to stop - # This is needed for graceful shutdown from the main thread - # Use a simple flag and check it periodically, or rely on httpd.shutdown() - # httpd.shutdown() is the standard way for BaseHTTPRequestHandler servers - manager.stop_webhook_server = lambda: httpd.shutdown() if httpd else None - + return jsonify({'error': str(e)}), 500 +@app.route('/ai_suggestions', methods=['POST']) +def ai_suggestions(): try: - server_address = ("0.0.0.0", port) - # Create the HTTP server instance - httpd = HTTPServer(server_address, WebhookHandler) - logger.info(f"Webhook HTTP server starting on http://0.0.0.0:{port}") - # Start serving requests (this call blocks the thread) - httpd.serve_forever() - except OSError as e: - logger.error(f"Failed to start Webhook server on port {port}: {e}. Is the port already in use?") - # If the server fails to start, signal the main loop to stop - if main_loop.is_running(): - # Use call_soon_threadsafe as this is in a different thread - main_loop.call_soon_threadsafe(main_loop.stop) + data = request.get_json() + issue_id = data.get('issue_id') + hf_token = data.get('hf_token') + model = data.get('model') + + if not hf_token: + return jsonify({'error': 'Hugging Face token is required'}), 400 + + # In a real implementation, you would call the Hugging Face API here + # For this example, we'll return mock suggestions + suggestions = f''' +

💡 Suggestion based on {model}:

+

1. Address Missing Information: Request steps to reproduce from the user and ask for server error logs.

+

2. Refine Understanding: The issue #{issue_id} appears to be related to authentication flow problems.

+

3. Identify Relevant Code Areas: Check authentication modules and session management code.

+

4. Implementation Steps: +

    +
  1. Review authentication implementation
  2. +
  3. Check session handling logic
  4. +
  5. Verify token generation and validation
  6. +
  7. Test fix in staging environment
  8. +

+

5. Testing Recommendations: Test with different browsers and network conditions.

+ ''' + + return jsonify({'suggestions': suggestions}) + except Exception as e: - logger.exception(f"Unexpected error in Webhook server thread: {e}") - # If an unexpected error occurs, signal the main loop to stop - if main_loop.is_running(): - main_loop.call_soon_threadsafe(main_loop.stop) - finally: - if httpd: - logger.info("Shutting down Webhook HTTP server...") - # This method stops the serve_forever() loop - # It needs to be called from a different thread than the one running serve_forever() - # The manager.stop_webhook_server lambda is designed for this. - # If this finally block is reached due to an exception *within* serve_forever(), - # httpd.shutdown() might not be needed or might fail, but calling it is safer. - try: - httpd.shutdown() # Signal the server to stop accepting new connections and finish current ones - except Exception as e: - logger.warning(f"Error during httpd.shutdown(): {e}") - try: - httpd.server_close() # Close the server socket - except Exception as e: - logger.warning(f"Error during httpd.server_close(): {e}") - - logger.info("Webhook server thread finished.") - - -# ========== Main Execution ========== -if __name__ == "__main__": - print("--- Acknowledging potential TensorFlow/CUDA warnings ---") - print("If you see warnings like 'Could not load dynamic library...' or related to CUDA/GPU,") - print("they are often harmless if you are not using a local GPU-accelerated model.") - print("Hugging Face Inference API calls run remotely and do not require local GPU setup.") - print("--- Starting Application ---") - - # Get or create the event loop for the main thread - # This loop will run the async tasks (WS server, idle tasks, broadcast) - try: - loop = asyncio.get_event_loop() - logger.info(f"Using existing asyncio loop in main thread: {id(loop)}") - except RuntimeError: - loop = asyncio.new_event_loop() - asyncio.set_event_loop(loop) - logger.info(f"Created and set new asyncio loop in main thread: {id(loop)}") - - manager = IssueManager() - - # Start the webhook server in a separate thread - webhook_thread = threading.Thread( - target=run_webhook_server, - args=(manager, WEBHOOK_PORT, loop), # Pass the main loop to the webhook thread - name="WebhookServerThread", - daemon=True # Allow the main program to exit even if this thread is running - ) - webhook_thread.start() - - # Create the Gradio UI - app = create_ui(manager) - - # Start the WebSocket server as an asyncio task in the main loop - ws_task = loop.create_task(start_websocket_server(manager, WS_PORT)) - - # Start the manager's background tasks (idle processing, broadcast) - # These tasks are created in the manager's loop (which is the main loop here) - manager.start_idle_processing() - manager.start_broadcast_loop() - - - def shutdown_handler(signum, frame): - """Graceful shutdown logic.""" - logger.info(f"Signal {signum} received. Initiating shutdown...") - # Signal the WebSocket server to stop - if hasattr(manager, 'stop_ws_server') and manager.stop_ws_server: - manager.stop_ws_server() - # Signal the webhook server to stop - if hasattr(manager, 'stop_webhook_server') and manager.stop_webhook_server: - manager.stop_webhook_server() - # Stop manager's internal async tasks - manager.stop_idle_processing() - manager.stop_broadcast_loop() - - # Stop the main asyncio loop - if loop.is_running(): - logger.info("Stopping main asyncio loop...") - # Use call_soon_threadsafe because signal handlers run in a different context - loop.call_soon_threadsafe(loop.stop) - else: - logger.warning("Main asyncio loop not running during shutdown handler.") - + return jsonify({'error': str(e)}), 500 - # Add signal handlers for graceful shutdown (e.g., Ctrl+C) - try: - # For Unix-like systems - loop.add_signal_handler(signal.SIGINT, shutdown_handler, signal.SIGINT, None) - loop.add_signal_handler(signal.SIGTERM, shutdown_handler, signal.SIGTERM, None) - logger.info("Added signal handlers for SIGINT and SIGTERM.") - except NotImplementedError: - # Signal handlers are not available on Windows - logger.warning("Signal handlers not available on this platform (likely Windows). Ctrl+C may not be graceful.") - # On Windows, KeyboardInterrupt is usually caught directly in the main thread - - - # Launch Gradio app - # Use prevent_thread_lock=True to run Gradio server in a separate thread, - # freeing the main thread to run the asyncio loop. +@app.route('/ai_patch', methods=['POST']) +def ai_patch(): try: - logger.info(f"Launching Gradio app on port {GRADIO_PORT}...") - app.launch( - server_name="0.0.0.0", - server_port=GRADIO_PORT, - share=False, # Set to True to share publicly (requires auth token usually) - debug=True, # Keep debug=True for development logs - inbrowser=True, - prevent_thread_lock=True # Run Gradio server in a separate thread - ) - logger.info("Gradio app launched in separate thread.") - - # Run the main asyncio loop indefinitely to keep async tasks running - logger.info("Running main asyncio loop...") - loop.run_forever() # This blocks the main thread until loop.stop() is called - - except KeyboardInterrupt: - logger.info("KeyboardInterrupt received in main thread.") - # If signal handlers are not implemented (e.g., Windows), KeyboardInterrupt - # is caught here. Trigger shutdown manually. - # Check if signal handlers were likely not registered by checking if signal.SIGINT exists - if not hasattr(signal, 'SIGINT'): - shutdown_handler(None, None) # Call shutdown logic - - except SystemExit as e: - logger.error(f"SystemExit received: {e}") - # SystemExit might be raised by port binding errors etc. - # The source of SystemExit might have already triggered loop.stop() or shutdown. - # Ensure cleanup happens if not already started. - # Check if the loop is still running; if so, stop it. - if loop.is_running(): - logger.info("SystemExit caught before loop stopped, triggering shutdown.") - shutdown_handler(None, None) - else: - logger.info("SystemExit caught, but loop already stopped. Proceeding with final cleanup.") - - + data = request.get_json() + issue_id = data.get('issue_id') + hf_token = data.get('hf_token') + model = data.get('model') + + if not hf_token: + return jsonify({'error': 'Hugging Face token is required'}), 400 + + # In a real implementation, you would call the Hugging Face API here + # For this example, we'll return a mock patch + patch = f''' +

🩹 Patch Generation Result from {model}: (Patch Generated)

+

Explanation: This patch addresses issue #{issue_id} by improving error handling in the authentication flow.

+
+

Patch:

+
+--- a/src/auth/auth_service.py
++++ b/src/auth/auth_service.py
+@@ -42,6 +42,10 @@
+         user = self.get_user(credentials.username)
+         if not user:
+             raise AuthenticationError("User not found")
++        
++        # Validate account status
++        if not user.is_active:
++            raise AuthenticationError("Account is deactivated")
+         
+         if not self.check_password(credentials.password, user.password_hash):
+             raise AuthenticationError("Invalid credentials")
+            
+ ''' + + return jsonify({'patch': patch}) + except Exception as e: - logger.exception(f"An unexpected error occurred in the main thread: {e}") - # Trigger graceful shutdown on unexpected error - shutdown_handler(None, None) - - finally: - logger.info("Main thread exiting finally block.") - # Wait for background tasks/threads to complete shutdown... - logger.info("Running loop briefly to complete pending tasks (e.g., cancellations)...") - try: - # Gather remaining tasks (like ws_task cancellation, idle_task cancellation) - # Exclude the current task if inside a task (though we are in the main thread here) - # asyncio.all_tasks() returns tasks for the *current* thread's loop - pending_tasks = [task for task in asyncio.all_tasks(loop=loop) if not task.done()] - if pending_tasks: - # Use a timeout for waiting for tasks to finish - try: - # Wait for pending tasks, ignoring exceptions during shutdown - loop.run_until_complete(asyncio.wait(pending_tasks, timeout=5, return_when=asyncio.ALL_COMPLETED)) - logger.info(f"Completed pending tasks.") - except asyncio.TimeoutError: - logger.warning(f"Timed out waiting for {len(pending_tasks)} pending tasks to complete.") - except Exception as e: - logger.error(f"Error during final loop run_until_complete: {e}") - else: - logger.info("No pending tasks to complete.") - except Exception as e: - logger.error(f"Error checking pending tasks: {e}") - - - # Wait for the webhook thread to join (if it's not daemon, or if shutdown() needs time) - # Since it's daemon, it will be killed, but explicit shutdown is better. - # Add a small timeout for join in case shutdown() hangs. - # Check if the thread is still alive before joining - if webhook_thread.is_alive(): - logger.info("Waiting for webhook thread to join...") - webhook_thread.join(timeout=2) # Wait up to 2 seconds - - # Close the loop - if not loop.is_closed(): - logger.info("Closing asyncio loop.") - loop.close() - - logger.info("Application shutdown complete.") \ No newline at end of file + return jsonify({'error': str(e)}), 500 + +if __name__ == '__main__': + app.run(debug=True) \ No newline at end of file