Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ import urllib.parse
|
|
17 |
import http.client
|
18 |
|
19 |
# Suppress warnings
|
20 |
-
warnings.filterwarnings('ignore', category=
|
21 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
22 |
|
23 |
def initialize_environment():
|
@@ -27,16 +27,17 @@ def initialize_environment():
|
|
27 |
for directory in directories:
|
28 |
os.makedirs(directory, exist_ok=True)
|
29 |
|
30 |
-
# Configure logging
|
|
|
31 |
logging.basicConfig(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
]
|
38 |
)
|
39 |
-
|
40 |
# Set up global exception handler
|
41 |
def handle_exception(exc_type, exc_value, exc_traceback):
|
42 |
if issubclass(exc_type, KeyboardInterrupt):
|
@@ -114,9 +115,7 @@ class GitHubBot:
|
|
114 |
"""Main GitHub bot implementation"""
|
115 |
|
116 |
def __init__(self):
|
117 |
-
self.github_api = None
|
118 |
-
|
119 |
-
def initialize_api(self, token: str):
|
120 |
"""Initialize GitHub API with token"""
|
121 |
self.github_api = GitHubAPI(token)
|
122 |
|
@@ -143,13 +142,13 @@ class GitHubBot:
|
|
143 |
f.write(f"# Resolution for Issue #{issue_number}\n\n{resolution}")
|
144 |
|
145 |
# Clone the forked repo
|
146 |
-
subprocess.run(['git', '
|
147 |
|
148 |
# Change to the cloned directory
|
149 |
-
|
150 |
|
151 |
# Assuming manual intervention now
|
152 |
-
|
153 |
|
154 |
# Commit and push the modifications
|
155 |
subprocess.run(['git', 'add', '.'])
|
@@ -234,17 +233,10 @@ custom_css = """
|
|
234 |
}
|
235 |
"""
|
236 |
|
237 |
-
def greet(name):
|
238 |
-
return f"Hello {name}!"
|
239 |
-
|
240 |
def create_gradio_interface():
|
241 |
-
with
|
242 |
-
|
243 |
-
|
244 |
-
greet_btn = gr.Button("Greet")
|
245 |
-
greet_btn.click(fn=greet, inputs=name, outputs=output)
|
246 |
-
return demo
|
247 |
-
|
248 |
with gr.Blocks(css=custom_css, theme=gr.themes.Base()) as demo:
|
249 |
gr.HTML("""
|
250 |
<div class="container">
|
@@ -257,7 +249,7 @@ def create_gradio_interface():
|
|
257 |
label="GitHub Token",
|
258 |
placeholder="Enter your GitHub token",
|
259 |
type="password",
|
260 |
-
elem_classes="
|
261 |
)
|
262 |
github_username = gr.Textbox(
|
263 |
label="Repository Owner",
|
@@ -368,9 +360,238 @@ def signal_handler(signum, frame):
|
|
368 |
cleanup()
|
369 |
sys.exit(0)
|
370 |
|
371 |
-
logger = logging.getLogger(__name__)
|
372 |
-
|
373 |
if __name__ == "__main__":
|
374 |
-
|
375 |
-
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
import http.client
|
18 |
|
19 |
# Suppress warnings
|
20 |
+
warnings.filterwarnings('ignore', category=User Warning) # Corrected here
|
21 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
22 |
|
23 |
def initialize_environment():
|
|
|
27 |
for directory in directories:
|
28 |
os.makedirs(directory, exist_ok=True)
|
29 |
|
30 |
+
# Configure logging
|
31 |
+
log_file = f"logs/github_bot_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
|
32 |
logging.basicConfig(
|
33 |
+
level=logging.INFO,
|
34 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
35 |
+
handlers=[
|
36 |
+
logging.FileHandler(log_file),
|
37 |
+
logging.StreamHandler()
|
38 |
]
|
39 |
)
|
40 |
+
|
41 |
# Set up global exception handler
|
42 |
def handle_exception(exc_type, exc_value, exc_traceback):
|
43 |
if issubclass(exc_type, KeyboardInterrupt):
|
|
|
115 |
"""Main GitHub bot implementation"""
|
116 |
|
117 |
def __init__(self):
|
118 |
+
self.github_api = None def initialize_api(self, token: str):
|
|
|
|
|
119 |
"""Initialize GitHub API with token"""
|
120 |
self.github_api = GitHubAPI(token)
|
121 |
|
|
|
142 |
f.write(f"# Resolution for Issue #{issue_number}\n\n{resolution}")
|
143 |
|
144 |
# Clone the forked repo
|
145 |
+
subprocess.run(['git', 'clone', forked_repo, '/tmp/' + forked_repo.split('/')[-1]])
|
146 |
|
147 |
# Change to the cloned directory
|
148 |
+
os.chdir('/tmp/' + forked_repo.split('/')[-1])
|
149 |
|
150 |
# Assuming manual intervention now
|
151 |
+
input("Apply the fix manually and stage the changes (press ENTER)? ")
|
152 |
|
153 |
# Commit and push the modifications
|
154 |
subprocess.run(['git', 'add', '.'])
|
|
|
233 |
}
|
234 |
"""
|
235 |
|
|
|
|
|
|
|
236 |
def create_gradio_interface():
|
237 |
+
"""Create and configure Gradio interface with custom styling"""
|
238 |
+
bot = GitHub Bot()
|
239 |
+
|
|
|
|
|
|
|
|
|
240 |
with gr.Blocks(css=custom_css, theme=gr.themes.Base()) as demo:
|
241 |
gr.HTML("""
|
242 |
<div class="container">
|
|
|
249 |
label="GitHub Token",
|
250 |
placeholder="Enter your GitHub token",
|
251 |
type="password",
|
252 |
+
elem_classes="input input-bordered input-primary"
|
253 |
)
|
254 |
github_username = gr.Textbox(
|
255 |
label="Repository Owner",
|
|
|
360 |
cleanup()
|
361 |
sys.exit(0)
|
362 |
|
|
|
|
|
363 |
if __name__ == "__main__":
|
364 |
+
# Register cleanup handlers
|
365 |
+
atexit.register(cleanup)
|
366 |
+
signal.signal(signal.SIGINT, signal_handler)
|
367 |
+
signal.signal(signal.SIGTERM, signal_handler)
|
368 |
+
|
369 |
+
try:
|
370 |
+
# Create and launch interface
|
371 |
+
demo = create_gradio_interface()
|
372 |
+
|
373 |
+
# Configure launch parameters
|
374 |
+
is_on_spaces = os.getenv("SPACE_ID") is not None
|
375 |
+
launch_kwargs = {
|
376 |
+
"server_name": "0.0.0.0",
|
377 |
+
"server_port": 7860,
|
378 |
+
"debug": True,
|
379 |
+
}
|
380 |
+
|
381 |
+
if not is_on_spaces:
|
382 |
+
launch_kwargs["share"] = True
|
383 |
+
logger.info("Running in local mode with public URL enabled")
|
384 |
+
else:
|
385 |
+
logger.info("Running on Hugging Face Spaces")
|
386 |
+
|
387 |
+
# Launch application
|
388 |
+
logger.info("Launching Gradio interface...")
|
389 |
+
demo = demo.queue()
|
390 |
+
demo.launch(**launch_kwargs)
|
391 |
+
|
392 |
+
except Exception as e:
|
393 |
+
logger.error(f"Error launching application: {str(e)}")
|
394 |
+
raise
|
395 |
+
finally:
|
396 |
+
logger.info("Application shutdown")
|
397 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
398 |
+
|
399 |
+
class HuggingFaceModel:
|
400 |
+
"""Class to handle Hugging Face model loading and predictions"""
|
401 |
+
|
402 |
+
def __init__(self, model_name: str):
|
403 |
+
self.model_name = model_name
|
404 |
+
self.model = None
|
405 |
+
self.tokenizer = None
|
406 |
+
self.load_model()
|
407 |
+
|
408 |
+
def load_model(self):
|
409 |
+
"""Load the Hugging Face model and tokenizer"""
|
410 |
+
try:
|
411 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
412 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
|
413 |
+
logger.info(f"Model {self.model_name} loaded successfully.")
|
414 |
+
except Exception as e:
|
415 |
+
logger.error(f"Error loading model {self.model_name}: {str(e)}")
|
416 |
+
raise
|
417 |
+
|
418 |
+
def predict(self, text: str) -> Dict:
|
419 |
+
"""Make a prediction using the loaded model"""
|
420 |
+
try:
|
421 |
+
inputs = self.tokenizer(text, return_tensors="pt")
|
422 |
+
outputs = self.model(**inputs)
|
423 |
+
predictions = outputs.logits.argmax(dim=-1).item()
|
424 |
+
logger.info(f"Prediction made for input: {text} with result: {predictions}")
|
425 |
+
return {"prediction": predictions}
|
426 |
+
except Exception as e:
|
427 |
+
logger.error(f"Error making prediction: {str(e)}")
|
428 |
+
return {"error": str(e)}
|
429 |
+
|
430 |
+
# Update the Gradio interface to include model loading and prediction
|
431 |
+
def create_gradio_interface():
|
432 |
+
"""Create and configure Gradio interface with custom styling"""
|
433 |
+
bot = GitHubBot()
|
434 |
+
hf_model = None # Initialize Hugging Face model variable
|
435 |
+
|
436 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Base()) as demo:
|
437 |
+
# Existing Gradio components...
|
438 |
+
|
439 |
+
model_name = gr.Textbox(
|
440 |
+
label="Hugging Face Model Name",
|
441 |
+
placeholder="Enter the model name (e.g., 'distilbert-base-uncased')",
|
442 |
+
elem_classes="input input-bordered input-primary"
|
443 |
+
)
|
444 |
+
|
445 |
+
load_model_button = gr.Button(
|
446 |
+
"Load Model",
|
447 |
+
elem_classes="button button-primary"
|
448 |
+
)
|
449 |
+
|
450 |
+
prediction_text = gr.Textbox(
|
451 |
+
label="Input Text for Prediction",
|
452 |
+
placeholder="Enter text to classify...",
|
453 |
+
elem_classes="textarea textarea-primary"
|
454 |
+
)
|
455 |
+
|
456 |
+
predict_button = gr.Button(
|
457 |
+
"Make Prediction",
|
458 |
+
elem_classes="button button-success"
|
459 |
+
)
|
460 |
+
|
461 |
+
output_prediction = gr.Textbox(
|
462 |
+
label="Prediction Output",
|
463 |
+
interactive=False,
|
464 |
+
elem_classes="output-area"
|
465 |
+
)
|
466 |
+
|
467 |
+
# Load model handler
|
468 |
+
def load_model_handler(model_name_input):
|
469 |
+
nonlocal hf_model
|
470 |
+
try:
|
471 |
+
hf_model = HuggingFaceModel(model_name_input)
|
472 |
+
return f"Model {model_name_input} loaded successfully."
|
473 |
+
except Exception as e:
|
474 |
+
return f"Error loading model: {str(e)}"
|
475 |
+
|
476 |
+
# Prediction handler
|
477 |
+
def predict_handler(input_text):
|
478 |
+
if hf_model is None:
|
479 |
+
return "Model not loaded. Please load a model first."
|
480 |
+
result = hf_model.predict(input_text)
|
481 |
+
return result
|
482 |
+
|
483 |
+
# Connect components
|
484 |
+
load_model_button.click(
|
485 |
+
load_model_handler,
|
486 |
+
inputs=[model_name],
|
487 |
+
outputs=[output_prediction]
|
488 |
+
)
|
489 |
+
|
490 |
+
predict_button.click(
|
491 |
+
predict_handler,
|
492 |
+
inputs=[prediction_text],
|
493 |
+
outputs=[output_prediction]
|
494 |
+
)
|
495 |
+
|
496 |
+
return demo
|
497 |
+
|
498 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
499 |
+
|
500 |
+
class HuggingFaceModel:
|
501 |
+
"""Class to handle Hugging Face model loading and predictions"""
|
502 |
+
|
503 |
+
def __init__(self, model_name: str):
|
504 |
+
self.model_name = model_name
|
505 |
+
self.model = None
|
506 |
+
self.tokenizer = None
|
507 |
+
self.load_model()
|
508 |
+
|
509 |
+
def load_model(self):
|
510 |
+
"""Load the Hugging Face model and tokenizer"""
|
511 |
+
try:
|
512 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
513 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
|
514 |
+
logger.info(f"Model {self.model_name} loaded successfully.")
|
515 |
+
except Exception as e:
|
516 |
+
logger.error(f"Error loading model {self.model_name}: {str(e)}")
|
517 |
+
raise
|
518 |
+
|
519 |
+
def predict(self, text: str) -> Dict:
|
520 |
+
"""Make a prediction using the loaded model"""
|
521 |
+
try:
|
522 |
+
inputs = self.tokenizer(text, return_tensors="pt")
|
523 |
+
outputs = self.model(**inputs)
|
524 |
+
predictions = outputs.logits.argmax(dim=-1).item()
|
525 |
+
logger.info(f"Prediction made for input: {text} with result: {predictions}")
|
526 |
+
return {"prediction": predictions}
|
527 |
+
except Exception as e:
|
528 |
+
logger.error(f"Error making prediction: {str(e)}")
|
529 |
+
return {"error": str(e)}
|
530 |
+
|
531 |
+
# Update the Gradio interface to include model loading and prediction
|
532 |
+
def create_gradio_interface():
|
533 |
+
"""Create and configure Gradio interface with custom styling"""
|
534 |
+
bot = GitHubBot()
|
535 |
+
hf_model = None # Initialize Hugging Face model variable
|
536 |
+
|
537 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Base()) as demo:
|
538 |
+
# Existing Gradio components...
|
539 |
+
|
540 |
+
model_name = gr.Textbox(
|
541 |
+
label="Hugging Face Model Name",
|
542 |
+
placeholder="Enter the model name (e.g., 'distilbert-base-uncased')",
|
543 |
+
elem_classes="input input-bordered input-primary"
|
544 |
+
)
|
545 |
+
|
546 |
+
load_model_button = gr.Button(
|
547 |
+
"Load Model",
|
548 |
+
elem_classes="button button-primary"
|
549 |
+
)
|
550 |
+
|
551 |
+
prediction_text = gr.Textbox(
|
552 |
+
label="Input Text for Prediction",
|
553 |
+
placeholder="Enter text to classify...",
|
554 |
+
elem_classes="textarea textarea-primary"
|
555 |
+
)
|
556 |
+
|
557 |
+
predict_button = gr.Button(
|
558 |
+
"Make Prediction",
|
559 |
+
elem_classes="button button-success"
|
560 |
+
)
|
561 |
+
|
562 |
+
output_prediction = gr.Textbox(
|
563 |
+
label="Prediction Output",
|
564 |
+
interactive=False,
|
565 |
+
elem_classes="output-area"
|
566 |
+
)
|
567 |
+
|
568 |
+
# Load model handler
|
569 |
+
def load_model_handler(model_name_input):
|
570 |
+
nonlocal hf_model
|
571 |
+
try:
|
572 |
+
hf_model = HuggingFaceModel(model_name_input)
|
573 |
+
return f"Model {model_name_input} loaded successfully."
|
574 |
+
except Exception as e:
|
575 |
+
return f"Error loading model: {str(e)}"
|
576 |
+
|
577 |
+
# Prediction handler
|
578 |
+
def predict_handler(input_text):
|
579 |
+
if hf_model is None:
|
580 |
+
return "Model not loaded. Please load a model first."
|
581 |
+
result = hf_model.predict(input_text)
|
582 |
+
return result
|
583 |
+
|
584 |
+
# Connect components
|
585 |
+
load_model_button.click(
|
586 |
+
load_model_handler,
|
587 |
+
inputs=[model_name],
|
588 |
+
outputs=[output_prediction]
|
589 |
+
)
|
590 |
+
|
591 |
+
predict_button.click(
|
592 |
+
predict_handler,
|
593 |
+
inputs=[prediction_text],
|
594 |
+
outputs=[output_prediction]
|
595 |
+
)
|
596 |
+
|
597 |
+
return demo
|