File size: 12,663 Bytes
84df34e
 
 
850e677
7eae98c
9c9ed59
46b45ba
7eae98c
44e3c5c
84df34e
 
 
 
 
 
 
 
 
 
 
 
 
bf1f293
84df34e
 
b5cd148
 
 
 
 
 
 
84df34e
 
 
 
 
 
9355e8a
84df34e
b5cd148
cee75e9
850e677
84df34e
9355e8a
cf30049
9355e8a
 
84df34e
 
15267a1
84df34e
 
7eae98c
84df34e
46b45ba
84df34e
b5cd148
7eae98c
84df34e
 
cee75e9
 
7eae98c
fa57097
7eae98c
84df34e
 
 
 
9355e8a
b5cd148
84df34e
 
 
 
 
 
9355e8a
84df34e
7eae98c
 
9355e8a
b5cd148
84df34e
18542cb
7eae98c
18542cb
 
7eae98c
18542cb
7eae98c
 
18542cb
 
 
 
 
850e677
18542cb
 
84df34e
 
9355e8a
b5cd148
84df34e
 
f599bc8
cf30049
84df34e
 
9355e8a
84df34e
 
 
 
 
 
 
 
7eae98c
 
84df34e
 
7eae98c
84df34e
fa57097
7eae98c
84df34e
 
 
 
bdadc5f
 
7eae98c
c6d4a9e
4cb60ac
84df34e
 
 
9355e8a
b5cd148
850e677
 
84df34e
 
 
 
 
9355e8a
15267a1
84df34e
 
 
 
b5cd148
7eae98c
3a78222
84df34e
085b6c2
 
 
 
 
84df34e
085b6c2
84df34e
9355e8a
b5cd148
32e352e
ec2a28d
 
850e677
7eae98c
3a78222
7eae98c
ec2a28d
7eae98c
 
ec2a28d
850e677
ec2a28d
850e677
 
 
ec2a28d
7eae98c
ec2a28d
9355e8a
ec2a28d
 
84df34e
ec2a28d
84df34e
9355e8a
b5cd148
6cba16e
 
850e677
 
ee72905
7eae98c
ddcf702
 
7eae98c
 
850e677
84df34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9355e8a
84df34e
122a569
09ae574
7eae98c
122a569
09ae574
84df34e
0dbf789
 
 
f16d00a
0dbf789
9c9ed59
daa6574
9c9ed59
b5cd148
05e56df
62cde7b
0740cc4
f20de8c
d5e2616
f20de8c
d5e2616
f16d00a
7eae98c
d816c58
9c9ed59
 
 
 
 
 
 
 
 
 
 
62cde7b
9c9ed59
 
ca677a9
7eae98c
 
 
9c9ed59
 
0dbf789
9c9ed59
 
9355e8a
 
 
 
 
 
 
 
 
 
 
9c9ed59
 
 
 
 
 
 
 
 
9355e8a
 
 
 
 
 
 
 
 
 
9c9ed59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0b562
f791e50
7d0b562
5e571e4
 
cc57972
5e571e4
 
 
cc57972
5e571e4
 
 
cc57972
5e571e4
 
 
cc57972
5e571e4
 
 
cc57972
5e571e4
 
 
cc57972
5e571e4
 
 
cc57972
5e571e4
 
 
cc57972
5e571e4
 
 
cc57972
5e571e4
 
 
cc57972
5e571e4
 
 
77d025b
850e677
b5cd148
850e677
 
1dfa597
850e677
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import subprocess
import random
import torch
from transformers import pipeline
import gradio as gr
from safe_search import safe_search
from i_search import google, i_search as i_s
from agent import (
    ACTION_PROMPT,
    ADD_PROMPT,
    COMPRESS_HISTORY_PROMPT,
    LOG_PROMPT,
    LOG_RESPONSE,
    MODIFY_PROMPT,
    PREFIX,
    SEARCH_QUERY,
    READ_PROMPT,
    TASK_PROMPT,
    UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
from datetime import datetime

def format_prompt(message, history):
    """Formats the prompt by concatenating user prompts and bot responses."""
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def run_gpt(
    prompt_template,
    stop_tokens,
    max_tokens,
    purpose,
    **prompt_kwargs,
):
    """Runs the GPT model to generate a response."""
    seed = random.randint(1, 1111111111111111)
    print(seed)
    generate_kwargs = dict(
        temperature=1.0,
        max_new_tokens=2096,
        top_p=0.99,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )

    content = PREFIX.format(
        date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        purpose=purpose,
        safe_search=safe_search,
    ) + prompt_template.format(**prompt_kwargs)

    if True:
        print(LOG_PROMPT.format(content))

    model = pipeline('text-generation', model='microsoft/DialoGPT-small', pad_token_id=model.config.eos_token_id)  # Set pad_token_id
    response = model(content, max_length=max_tokens, temperature=1.0, truncation=True)  # Explicitly set truncation
    resp = response[0]['generated_text']

    if True:
        print(LOG_RESPONSE.format(resp))
    return resp


def compress_history(purpose, task, history, directory):
    """Compresses the history using the GPT model."""
    resp = run_gpt(
        COMPRESS_HISTORY_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=512,
        purpose=purpose,
        task=task,
        history=history,
    )
    return resp

def call_search(purpose, task, history, directory, action_input):
    """Calls the search function."""
    print("CALLING SEARCH")
    try:

        if "http" in action_input:
            if "<" in action_input:
                action_input = action_input.replace("<", "")
            if ">" in action_input:
                action_input = action_input.replace(">", "")

            response = i_s(action_input)
            #response = google(search_return)
            print(response)
            history += "observation: search result is: {}\n".format(response)
        else:
            history += "observation: I need to provide a valid URL to 'action: SEARCH'\n"
    except Exception as e:
        history += "observation: {}'\n".format(e)
    return "MAIN", None, history, task

def call_main(purpose, task, history, directory, action_input):
    """Calls the main function."""
    resp = run_gpt(
        ACTION_PROMPT,
        stop_tokens=["observation:", "task:", "action:","thought:"],
        max_tokens=2096,
        purpose=purpose,
        task=task,
        history=history,
    )
    lines = resp.strip().strip("\n").split("\n")
    for line in lines:
        if line == "":
            continue
        if line.startswith("thought: "):
            history += "{}\n".format(line)
        elif line.startswith("action: "):

            action_name, action_input = line.split(": ")
            print (f'ACTION_NAME :: {action_name}')
            print (f'ACTION_INPUT :: {action_input}')

            history += "{}\n".format(line)
            if "COMPLETE" in action_name or "COMPLETE" in action_input:
                task = "COMPLETE"
                return action_name, action_input, history, task
            else:
                return action_name, action_input, history, task
        else:
            history += "{}\n".format(line)
            #history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)

            #return action_name, action_input, history, task
            #assert False, "unknown action: {}".format(line)
    return "MAIN", None, history, task


def call_set_task(purpose, task, history, directory, action_input):
    """Sets the task."""
    task = "COMPLETE"
    resp = run_gpt(
        TASK_PROMPT,
        stop_tokens=[],
        max_tokens=64,
        purpose=purpose,
        task=task,
        history=history,
    ).strip("\n")
    history += "observation: task has been updated to: {}\n".format(task)
    return "MAIN", None, history, task

def end_fn(purpose, task, history, directory, action_input):
    """Ends the function."""
    task = "COMPLETE"
    return "COMPLETE", "COMPLETE", history, task

NAME_TO_FUNC = {
    "MAIN": call_main,
    "UPDATE-TASK": call_set_task,
    "SEARCH": call_search,
    "COMPLETE": end_fn,

}

def run_action(purpose, task, history, directory, action_name, action_input):
    """Runs the action."""
    print(f'action_name::{action_name}')
    try:
        if "RESPONSE" in action_name or "COMPLETE" in action_name:
            action_name = "COMPLETE"
            task = "COMPLETE"
            return action_name, "COMPLETE", history, task

        # compress the history when it is long
        if len(history.split("\n")) > 5:
            if True:
                print("COMPRESSING HISTORY")
            history = history
        if not action_name in NAME_TO_FUNC:
            action_name = "MAIN"
        if action_name == "SEARCH":
            action_name = "SEARCH"
        assert action_name in NAME_TO_FUNC

        print("RUN: ", action_name, action_input)
        return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
    except Exception as e:
        history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"

        return "MAIN", None, history, task

def run(purpose,history):
    """Runs the main loop."""
    #print(purpose)
    #print(hist)
    task = "COMPLETE"
    directory = "directory"
    if history:
        history = history
    if not history:
        history = ""

    action_name = "MAIN"
    action_input = "input"
    while True:
        print("")
        print("")
        print("---")
        print("purpose:", purpose)
        print("task:", task)
        print("---")
        print(history)
        print("---")

        action_name, action_input, history, task = run_action(
            purpose,
            task,
            history,
            directory,
            action_name,
            action_input,
        )
        yield (history)
        #yield ("",[(purpose,history)])
        if task == "COMPLETE":
            return (history)
            #return ("", [(purpose,history)])

agents =[
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV"
]
def generate(
        prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    """Generates the output."""
    seed = random.randint(1,1111111111111111)

    agent=prompts.WEB_DEV
    if agent_name == "WEB_DEV":
        agent = prompts.WEB_DEV
    if agent_name == "AI_SYSTEM_PROMPT":
        agent = prompts.AI_SYSTEM_PROMPT
    if agent_name == "PYTHON_CODE_DEV":
        agent = prompts.PYTHON_CODE_DEV
    system_prompt=agent
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=seed,
    )

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    model = pipeline('text-generation', model='microsoft/DialoGPT-small')
    response = model(formatted_prompt, max_length=1024, temperature=1.0)
    output = response[0]['generated_text']

    return output


additional_inputs=[
    gr.Dropdown(
        label="Agents",
        choices=[s for s in agents],
        value=agents[0],
        interactive=True,
        ),
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),

    gr.Slider(
        label="Max new tokens",
        value=1048*10,
        minimum=0,
        maximum=1048*10,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),
]

examples = [
    [
        "Write an intro for a Bitcoin book, covering origins, core principles, and disruption potential.  Use these links: [https://bitcoin.org/bitcoin.pdf, https://en.wikipedia.org/wiki/Satoshi_Nakamoto, https://www.investopedia.com/terms/b/bitcoin.asp]",
        "Introduction",
    ],
    [
        "Write a chapter titled 'The Genesis of Bitcoin' using these links: [https://bitcoin.org/bitcoin.pdf, https://en.wikipedia.org/wiki/Satoshi_Nakamoto, https://www.investopedia.com/terms/b/bitcoin.asp]",
        "The Genesis of Bitcoin",
    ],
    [
        "Write a chapter titled 'The Rise of the Decentralized' using these links: [https://en.wikipedia.org/wiki/Bitcoin_exchange, https://en.wikipedia.org/wiki/Bitcoin_mining, https://www.investopedia.com/terms/d/decentralized-finance-defi.asp]",
        "The Rise of the Decentralized",
    ],
    [
        "Write a chapter titled 'The Bitcoin Revolution' using these links: [https://www.investopedia.com/terms/b/bitcoin-volatility.asp, https://www.investopedia.com/terms/s/scalability.asp, https://www.investopedia.com/terms/r/regulation.asp]",
        "The Bitcoin Revolution",
    ],
    [
        "Write a chapter titled 'Beyond Bitcoin: The Blockchain Revolution' using these links: [https://www.investopedia.com/terms/b/blockchain.asp, https://www.ibm.com/topics/blockchain]",
        "Beyond Bitcoin: The Blockchain Revolution",
    ],
    [
        "Write a chapter titled 'Reshaping Finance: Bitcoin's Impact on the Global System' using these links: [https://www.investopedia.com/terms/c/central-bank-digital-currency-cbdc.asp, https://www.investopedia.com/terms/i/international-trade.asp]",
        "Reshaping Finance: Bitcoin's Impact on the Global System",
    ],
    [
        "Write a chapter titled 'Empowering Individuals: Bitcoin's Social Impact' using these links: [https://en.wikipedia.org/wiki/Financial_inclusion, https://www.investopedia.com/terms/w/wealth-distribution.asp]",
        "Empowering Individuals: Bitcoin's Social Impact",
    ],
    [
        "Write a chapter titled 'A New World Order: Bitcoin's Potential for Change' using these links: [https://en.wikipedia.org/wiki/Sustainable_development, https://en.wikipedia.org/wiki/Global_trade, https://www.un.org/en/development/desa/policy/wssd/]",
        "A New World Order: Bitcoin's Potential for Change",
    ],
    [
        "Write a chapter titled 'The Regulatory Landscape' using these links: [https://www.investopedia.com/terms/r/regulation.asp, https://www.coindesk.com/regulation]",
        "The Regulatory Landscape",
    ],
    [
        "Write a chapter titled 'The Environmental Impact' using these links: [https://www.investopedia.com/terms/b/bitcoin-mining.asp, https://digiconomist.net/bitcoin-energy-consumption]",
        "The Environmental Impact",
    ],
]

def launch_interface():
    """Launches the interface."""
    gr.ChatInterface(
        fn=run,
        chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"),
        title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
        examples=examples,
        concurrency_limit=20,
    ).launch(show_api=False)

launch_interface()