Mistri / app.py
acecalisto3's picture
Update app.py
091760c verified
raw
history blame
7.85 kB
from huggingface_hub import InferenceClient
import gradio as gr
import random
from logx import prompts
import os
import sys
import json
from typing import List, Dict
# Import necessary modules from other files
from logx.prompts import (
createLlamaPrompt,
createSpace,
isPythonOrGradioAppPrompt,
isReactAppPrompt,
isStreamlitAppPrompt,
getWebApp,
getGradioApp,
getReactApp,
getStreamlitApp,
parseTutorial,
generateFiles,
isPythonOrGradioAppPrompt,
isStreamlitAppPrompt,
isReactAppPrompt,
)
from agent import Agent
from types import (
Code,
Prompt,
AppType,
File,
Space,
Tutorial,
App,
WebApp,
GradioApp,
StreamlitApp,
ReactApp,
Code,
)
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
def run():
text_output = "Some text output"
chatbot_output = [{"text": "Chatbot response"}]
return text_output, chatbot_output
# Ensure the function is properly linked to the event
interface = gr.Interface(fn=run, inputs=[...], outputs=[gr.Textbox(), gr.Chatbot()])
# Define the main function
def main():
"""
Main function that orchestrates the code generation process.
"""
# Load prompts from prompts.py
prompts = load_prompts()
# Initialize an Agent instance
agent = Agent(prompts)
# Get the user's input
user_input = input("Enter your prompt: ")
# Process the user's input
result = agent.process(user_input)
# Print the result
print(result)
# Function to load prompts from prompts.py
def load_prompts():
"""
Loads prompts from prompts.py.
"""
prompts = {
"createLlamaPrompt": createLlamaPrompt,
"createSpace": createSpace,
"isPythonOrGradioAppPrompt": isPythonOrGradioAppPrompt,
"isReactAppPrompt": isReactAppPrompt,
"isStreamlitAppPrompt": isStreamlitAppPrompt,
"getWebApp": getWebApp,
"getGradioApp": getGradioApp,
"getReactApp": getReactApp,
"getStreamlitApp": getStreamlitApp,
"parseTutorial": parseTutorial,
"generateFiles": generateFiles,
}
return prompts
# Indentation corrected here
def create_prompt(app_type: str, app_name: str, app_description: str, app_features: list[str], app_dependencies: list[str], app_space: str, app_tutorial: str) -> str:
prompt = f"""
I need you to help me create a {app_type} web application.
The application name is: {app_name}
The application description is: {app_description}
The application features are: {app_features}
The application dependencies are: {app_dependencies}
The application space is: {app_space}
The application tutorial is: {app_tutorial}
Please generate the code for the application.
"""
return prompt
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
seed = random.randint(1,1111111111111111)
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
additional_inputs=[
gr.Dropdown(
label="Agents",
choices=[s for s in agents],
value=agents[0],
interactive=True,
),
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1048*10,
minimum=0,
maximum=1000*10,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
]
examples=[
["Create a simple web application using Flask", agents[0], None, None, None, None, ],
["Generate a Python script to perform a linear regression analysis", agents[2], None, None, None, None, ],
["Create a Dockerfile for a Node.js application", agents[1], None, None, None, None, ],
["Write a shell script to automate the deployment of a web application to a server", agents[3], None, None, None, None, ],
["Generate a SQL query to retrieve the top 10 most popular products by sales", agents[4], None, None, None, None, ],
["Write a Python script to generate a random password with a given length and complexity", agents[2], None, None, None, None, ],
["Create a simple game in Unity using C#", agents[0], None, None, None, None, ],
["Generate a Java program to implement a binary search algorithm", agents[2], None, None, None, None, ],
["Write a shell script to monitor the CPU usage of a server", agents[1], None, None, None, None, ],
["Create a simple web application using React and Node.js", agents[0], None, None, None, None, ],
["Generate a Python script to perform a sentiment analysis on a given text", agents[2], None, None, None, None, ],
["Write a shell script to automate the backup of a MySQL database", agents[1], None, None, None, None, ],
["Create a simple game in Unreal Engine using C++", agents[3], None, None, None, None, ],
["Generate a Java program to implement a bubble sort algorithm", agents[2], None, None, None, None, ],
["Write a shell script to monitor the memory usage of a server", agents[1], None, None, None, None, ],
["Create a simple web application using Angular and Node.js", agents[0], None, None, None, None, ],
["Generate a Python script to perform a text classification on a given dataset", agents[2], None, None, None, None, ],
["Write a shell script to automate the installation of a software package on a server", agents[1], None, None, None, None, ],
["Create a simple game in Godot using GDScript", agents[3], None, None, None, None, ],
["Generate a Java program to implement a merge sort algorithm", agents[2], None, None, None, None, ],
["Write a shell script to automate the cleanup of temporary files on a server", agents[1], None, None, None, None, ],
]
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="Mixtral 46.7B",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)
# Run the main function if the script is executed directly
if __name__ == "__main__":
main()